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Abstract:- This paper presents an novel approach for fault detection and diagnosis (FDD) of sensor as 
well as process faults for Electro-Hydraulic Actuators (EHA) using a bank of residual generators, each 

of which employs an Extended Kalman Filter (EKF)-based parameter estimator. In traditional sensor 

fault detection schemes, actual sensor measurements are compared with measurements reconstructed 

using state estimators following an analytical redundancy approach. In contrast, we propose detection 

of sensor faults by comparing estimated values of plant parameters, which deviate under fault, with 
their nominal values. Since process faults usually manifest themselves in deviation of process 

parameters, this leads to a unified approach to fault detection using parameter estimators. Fault 

isolation is then achieved by using the set of detection flags, obtained by thresholding each of the 

residuals, in a so-called diagnosis matrix (D-Matrix). Unlike several earlier works on FDI for electro-

hydraulic actuator systems, which do not address sensor faults, the present approach is capable of 

detection and identification of both sensor and process faults. Numerical simulation results for an EHA 

of a rocket demonstrate the efficacy of the method.   
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I. INTRODUCTION 
In aerospace applications consequences of faults can be disastrous, and therefore fault detection and 

diagnosis is of high importance in such systems. Fault Detection and Identification (FDI) systems based on 

hardware redundancy and voting logic incur penalties in terms of space, weight and cost. Therefore an FDI 

approach based on model-based analytical redundancy and real time digital signal processing enabled by 

inexpensive, high-speed embedded processors provide an attractive technological alternative.  

In, electro-hydraulic actuator (EHA) generally, three types of sensors used are LVDT and differential pressure 

transducers for the cylinder and current sensor for servo valve actuating coil. Critical process parameters of an 

EHA for Flex Nozzle Control (FNC) of a rocket are bulk modulus and flex-seal stiffness. Failure in the above 

sensors and significant changes in the above process parameter have been considered in this paper. Note that in 

any fault detection method employing a parameter estimator, sensor measurements are invariably used.  Hence, 

fault detection and diagnosis using parameter estimators are intrinsically sensitive both to process and sensor 

faults and must be able to isolate individual faults.   

The problems of parameter fault detection in electro-hydraulic actuator using EKF have been addressed 
by several researchers in the past few years. An and Sepehri [1] developed and experimentally verified an EKF-

based scheme for leakage fault detection in hydraulic actuator. They also showed another EKF based scheme 

capable of detecting the incorrect supply pressure fault [2]. Chinniah et. al. [3] presented the EKF based bulk 

modulus and viscous damping coefficient estimation in a hydraulic actuation system. However, the above works 

addressed single parameter estimation using EKF for fault detection. Note that as solutions to FDD of a system 

these are incomplete since these methods are also susceptible to faults in the system other than the particular one 

considered. Chinniah et. al. [4] had also presented a method of direct estimation of several physical parameters. 

While this caters to several process faults simultaneously, still the effect of sensor faults is not addressed. 

Moreover, direct estimation of physical parameters often lead to non-linear-in parameters formulations which 

must be solved using iterative nonlinear optimization methods such as the Levenberg Marquardt method. 

However, it is well known that physical parameters can be estimated indirectly, by first estimating a set of 
model parameters using a linear-in-parameters approach, and then solving them out from the estimated model 

parameters, under certain conditions of identification (Iserman, [5]). All the above works have considered that 

sensors measurement used in parameter estimators are normal. But in practice there is always the possibility of a 

sensor fault which may be misconstrued as a parametric fault.   

This paper presents a multiple EKF based fault detection and isolation method which can handle single 

failures either in sensors or process parameters simultaneously. Multiple EKFs, each with a distinct set of 

excitation and measurement variables, are used for the estimation of various physical parameters of interest. 
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Finally, these estimated parameters are compared with their nominal values to detect sensor or parametric faults. 

Note that prior knowledge of the normal range of values of the parameters is usually available for comparison in 

residual generators, which is not the case for state estimation based approaches. To the best of the authors’ 

knowledge, a method of detection of both sensor and process faults in EHAs has not been reported yet.   

This paper is organized as follows. Section 1, gives the introduction of Fault diagnosis. A typical model 

of electro hydraulic actuation systems which is used for the validation of fault diagnosis method is discussed in 

Section 2. Section 3, gives the brief description of EKF as fault detector. Section 4 highlights the simulation 

results. Conclusions and future scope of work are given in Section 5. 

 

II. A TYPICAL MODEL OF ELECTRO-HYDRAULIC ACTUATION SYSTEMS 
In rockets or aircrafts control surface (fin/nozzle etc) is used for generating the control forces and 

moments based on a suitable command from autopilot. The servo controller of the actuator receives the position 

command from the autopilot, compares it with actuator position sensor’s (LVDT) output and drives an 

appropriate amount of current through the hydraulic servo valve spool actuating coil. The hydraulic power 

amplification in the servo valve is in turn used to generate the requisite forces and the motion to the main 

cylinder of the EHA [5]. Exact positioning of the cylinder under varying load on the nozzle is achieved by 

closed loop feedback control. Fig. 1. shows a typical block diagram of an EHA. 

 

 
Fig.1: Typical Block Diagram of Electro-Hydraulic Actuator 

 

Note that although the basic flow-pressure relationships of a valve is non-linear, under closed loop 

high-gain feedback control, typically existing in EHAs for aerospace applications (e.g. rockets under thrust 

vector control), the commanded displacement range of the servo-valve remains confined to about 10% of its full 
scale value. For such applications, linear modelling of an EHA is appropriate and is recommended in application 

notes of major global aerospace actuator manufacturers [6]. Accordingly, a linear model is used in the EKF 

estimator.  

 

The corresponding parameters for linear electro hydraulic actuator model are given in Table -1.   

Table I: Actuator Parameters 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Parameters Descriptions 

C1g Flow-current coefficient Q/I at P =0 

 Bulk modulus 

Vo Entrapped volume 

C2g Flow- Pressure coefficient 

A Actuator area 

Jo Nozzle Inertia 

Ksd Seal Stiffness 

m Equivalent Load mass 

beq Friction Coefficient 

lT Torque arm length 

kpfb Feed back Gain 

kp Controller gain 

ki Controller gain 

kv Servo valve gain 

v Servo valve Bandwidth 
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In this typical EHA, the piston position (x) is measured using an LVDT and used as feedback. The 

other two measurements, namely, the differential pressure (Pm) and the servo valve coil current (ic) are used for 

monitoring only.  Note that many of the parameters in the above model, such as  
Tl , A , Vo , m  are geometric 

and inertial, The two critical process parameter that decide the performance of the actual system are, the bulk-

modulus () of the hydraulic fluid and the flex-seal stiffness (Ksd). These parameters can also change 
considerably due to faults such as introduction of air bubbles into the fluid or degradation of the flex seal 

material over time. Hence, changes in these parameters are considered as process faults for detection in this 
paper. In this work it is assumed that there is no fault in current sensor. This is only for simplicity. Inclusion of 

the current involves construction of a higher order state estimator. Moreover, the probability of failure of LVDT 

and pressure transducer are more than servo coil current sensor since the former involves moving parts which 

operate in a hydraulic high pressure environment, while the current sensor is electronic. Further, provision of 

hardware (h/w) redundancy is much easier for the current sensor than for an LVDT and/or pressure transducer.  

Hence, a state space model of the actuator is realized considering servo valve coil current(ic) which is a result of 

applied desired position command (xd) to the overall closed loop EHA system as an input excitation. This 

formulation reduces the order of the model from 5th to 3rd order and simplifies the estimation.  

 

The complete 3rd order state space model of the actuator can be written as follows: 
.

1 2 1  x x w   (2.1) 

.

2 21 1 22 2 23 3 2.   .   .   x A x A x A x w     

.

3 32 2 33 3 31 3  .   .   .    cx A x A x B i w     

Where  

1 2 3: ( );     : ( );   :  ( );mx position x x velocity v x differential pressure p  
2

21 22- / . ;       - /T eqA ksd m l A b m   

23 32  /  ;        - 4. . / oA A m A A V   

33 2 31 1  - 4. . /  ;      4. . /g o g oA C V B C V    

Two critical physical parameters such as bulk-modulus () and flex-seal stiffness (Ksd) are to be 
estimated simultaneously. Hence, the augmented state space model of the actuator which will be used in EKF 
based estimators is as follows: 

.

1 2 1  x x w   (2.2) 

.

2 21 4 1 22 2 23 3 2.   .   .   mx A x x A x A x w     

.

3 32 5 2 33 3 31 3  .   .   .    m m m cx A x x A x B i w     

.

4 4   x w  

.

5 5   x w  

Where 4   x Ksd , 5x  =   and 21 32 33 31, , ,m m m mA A A B  are the coefficiets similar to  

21 32 33 31, , ,A A A B without the term  and Ksd  . 1 5.....w w  are system noise elements. 

 

Applying the forward difference approximation to the above continuous state space model, Eqn. (2.3), 

the discrete state space model of the actuation system is as follows: 

 

1 1 2 1( 1) ( )  . ( )  . ( )x k x k T x k T w k     (2.3) 

2 21 4 1 22 2 23 3 2( 1) . ( ). ( ) (1 . ). ( ) . . ( ) . ( )mx k T A x k x k T A x k T A x k T w k       

3 32 5 2 33 5 3 31 5 3( 1) . . ( ). ( ) (1 . . ( )). ( ) . . ( ). ( ) . ( )m m m cx k T A x k x k T A x k x k T B x k i k T w k       

4 4 4( 1) ( )  . ( )x k x k T w k    

5 5 5( 1) ( )  . ( )x k x k T w k    

where T is 10sec 
The linearized system matrix is: 

 

 

 

i

k ki,j

j

ˆ(x ,u ,0)
x

f






  (2.4) 
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Where, 

11 44 55 12 21 21 4( ) ( ) ( ) 1,  ( ) , ( )  . .mk k k k T k T A x          

22 22 23 23 24 21 1( ) 1 . ,  ( )  . , ( )  . .mk T A k T A k T A x       

32 32 5 33 33 5 35 32 2 33 3 31( )  . . ,  ( ) 1 . . ,  ( )  .( . . )m m m m m ck T A x k T A x k T A x A x B i         

and rest are zero. 

 

III. EXTENDED KALMAN FILTER (EKF) AS FAULT DETECTOR 
The Extended Kalman Filter (EKF) is a very well-known algorithm for estimation of state in nonlinear 

dynamic systems. It can also be used for simultaneous estimation of parameters and state for linear state-space 

models. The EKF uses a linear Taylor series approximation for covariance update. In recent times other 

algorithms that use higher order covariance updates and also on-line covariance estimation such as the 

Unscented Kalman Filter have been reported. These are however, computationally intensive and may not be 

feasible for high bandwidth real-time signal processing algorithms. In view of the above the EKF is used in this 

paper. Basic equations of the EKF are presented below for completeness. Details can be found in many 

references such as [4], [7], [8].  

 

Given the following nonlinear system,  

( 1) ( ( ), ( )) ( )X k f X k U k W k    (3.1) 

( ) ( ( )) ( )Z k h X k V k   

Where f(·) and h(·) are the nonlinear system and measurement functions. It describes the system state 

vector X(k), the measurement vector, Z(k) and system input vector U(k).W(k) and V(k) are the process and 

measurement noise vectors respectively.  

 

EKF prediction equations: 

ˆ ˆ( 1) ( ( ), ( ))X k f X k U k    (3.2) 
- ( 1) ( ) ( )TP k P k Q k     

 

EKF correction equations: 
- - 1( ) ( ) [ ( ) ( )]T TK k P k H HP k H R k    (3.3) 

- -ˆ ˆ ˆ( )  ( ) ( )[ ( ) -  ( ( ))]X k X k K k Z k h X k   
-( )  [  -  ( ). ] ( )P k I K k H P k  

K(k) is known as the Kalman gain. P(k), Q(k) and R(k) are the covariance matrices related to the state 

vector, X(k), process noise vector, W(k), and measurement noise vector, V(k), respectively.  

Note that in a given EKF formulation it may be possible to estimate the state vector for different choices of the 

measurement vector, if observability exists [8], [9]. This property can be exploited to generate structured 

residuals by constructing a residual vector, each component of which is derived from a particular member of a 

bank of EKFs with a measurement vector that is distinct from those of the other member EKFs of the bank. 

Below we describe how such a design is achieved for the EHA. 

The over all configuration of the proposed fault detection scheme [10] is shown in Fig.2. The 

measurements (Z) from actuator are position (x) and/or differential chamber pressure (Pm), along with servo 

valve coil current (ic), which is used as the input for the system model used in the EKFs. Advantage of using this 

servo valve coil current (ic) as excitation to the filter is that it reduces the number of states of the EKF improving 

computational complexity, convergence and ease of tuning. In the EKFs the estimator states comprises, the plant 

states as well as two parameters namely, the bulk-modulus () and the flex-seal stiffness (Ksd). 
 

 
Fig.2: Schematic Diagram of EKF Based Fault Detector 
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EKF generates estimated state vectors, at each sampling instance using the 

measurement, Z(k) and U(k). The physical parameter components in the  estimated state are then compared with 

their normal range of value to generate the Fault Flags. During normal operating condition, physical parameters 

in the estimated states are expected to converge to their true values within the normal range and thus the residual 

signals remains at relatively low levels due to transient estimation errors, measurement noise and/or modelling 

uncertainties. Upon the onset of faults these physical parameter estimates are expected to diverge from the 

normal range thus causing relatively larger residuals in turn triggering fault flags. The detailed structure of the 

bank of observers is shown in Fig. 3.  

     

: ( , , , , )mX x v P Ksd 


 
EKF Based Estimator (E2) Residual Generator #2

: ( )Z x

cU i FS  Flag_2
BM Flag_2

: ( , , , , )mX x v P Ksd 


 
EKF Based Estimator (E1) Residual Generator #1

: ( , )mZ x P

cU i FS  Flag_1
BM Flag_1

Nominal Value

Ksd = 800kg-m/deg;   = 7000kg/cm2

: ( )mZ P

: ( , , , , )mX x v P Ksd 


 
EKF Based Estimator (E3) Residual Generator #3

cU i FS  Flag_3
BM Flag_3

 
Fig.3: Multiple EKFs for Fault Detection 

 
As shown in Fig. 3, in this case, a bank of three EKF based estimators (E1, E2 and E3) are used for 

states/parameters estimation in parallel. Note that for each one the measurement vector is distinct. The estimator 

E1 uses both the measurements, position (x) and differential pressure (Pm) where as estimator E2 uses only one 

measurement position (x) and similarly estimator E3 uses only the differential pressure (Pm). For each these 

estimators the state vector is observable from its measurements. Using this bank of EKFs, under a single fault 

assumption, it is possible to detect and isolate different sensors and parameteric faults in actuator, structured 

residual generation scheme as described below.  

There are three residual generators corresponding to three estimators. Each residual generator uses two 

estimated parameters and compares with their nominal range of values. A simple thresholding scheme is used 

here, where residual signals are compared against some known constant threshold values and fault flags are set 

if it crosses the threshold. More advanced schemes such as the Sequential Probability Ratio Test or Generalized 

Liklihood Ratio Test etc. can also be implemented if a priori statistical knowledge of fault statistics exists. Each 
residual generator produces two boolean fault flags namely the ‘FS flag’ and the ‘BM flag’ for flex-seal stiffness 

(Ksd) and bulk-modulus () respectively. Thus corresponding to the estimators E1, E2 and E3 a total of six flags 
are generated as shown in Fig 3.  

So called fault diagnosis matrix or the D-Matrix is obtained by using all these fault flags. 

   

Table I: Fault Diagnosis Matrix (D-Matrix) 

 
 

In D-Matrix each row indicates the type of faults. It is to be highlighted that the distinct nature of each 
row allows easily diagnosing the type of fault.  

 

Parametric fault: If all three flags corresponding to a particular parameter show high then there is a fault in that 

particular parameter.  

If some of the flags but not all, corresponding to both the parameters show high then there is a possibility of 

sensor failure which can be identified by the following logics:     

    

ˆ ( )X k
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LVDT failure:  If the flags obtained from estimators E1 and E2 show high but not the same obtained from 

estimator E3 then there is a fault in position sensor, i.e. LVDT failure. Since, the estimators E1 and E2 use 

LVDT output (position (x)) as measurement whereas estimator E3 doesn’t. It uses differential pressure (Pm) as 

measurement.   

 

 Pressure Transducer Failure:  Similarly, if flags  obtained from estimators E1 and E3 show high but not the 

same obtained from estimator E2 then there is a fault in pressure sensor, i.e. pressure transducer failure. Except 

the estimator E2 all other estimators use the output of pressure transducer as measurement. 

 

IV. SIMULATION RESULTS AND ANALYSIS 
Real time simulations with full order model of hydraulic actuator-driven flex-nozzle control system 

were carried out in OPAL-RT/RT-LAB (Real time Simulation Computer) to simultaneously estimate the bulk-

modulus and flex-seal stiffness as shown in Fig. 4.  

A signal having a dc with a sine wave of 3Hz frequency ( 0.5 +0.5Sin18t) was used as a input to the truth model 

of the electro hydraulic actuation system. Corresponding srvo valve’s coil current was used as an excitation to 

the EKFs. The estimated physical parameters such as bulk-modulus () and flex-seal stiffness (Ksd) are 
compared with their nominal values (7000 kg/cm2 and 800 kg-m/deg) to generate the residuals. Fault is 

identified by observing the variation of the residual signals. Fault flags are set based on the threshold value and 

a fault diagnosis matrix (D-Matrix) is formed using the same. 

 

Input Signal Actuator

Estimator-1

Estimator-2 Fault Detector

ic

pm Estimator-3

ic

pm

x

x

ic

 
Fig.4: Typical Simulation block diagram in MATLAB®/SIMULINK 

 

In simulation, it was found that the EKF based estimators (E1, E2 and E3) estimated the states (x, v, 

Pm) and physical parameters namely flex-seal stiffness(Ksd) and bulk-modulus () accurately. 
In simulation the following faults were created. 

i. LVDT signal failure 

ii. Pressure Transducer signal failure 

iii. Flex-Seal Stiffness fault 

iv. Bulk-modulus fault 

During each fault a distinct pattern of fault flags were obatined which were used for fault diagnosis 

matrix (D-Matrix) formulation (Table-2).  

In support of the D-Matrix, simulation results of all the fault are given in Fig.5 to Fig.8. Fault isolation logic had 

performed successfully.  
LVDT fault was created at 0.15sec. From the simulation results it was clearly observed that estimated 

signals which were obtained from the estimators, E1 and E2 were diverging. But estimator E3 gave proper 

estimation (Fig. 5). Fault flags corresponding to E1 and E2 i.e.  ‘FS Flag_1’, ‘FS Flag_2’, ‘BM Flag_1’ and 

‘BM Flag_2’ were high (1). As per D-matrix, the status of the flags clearly proved that there was a fault in 

LVDT. Similarly a fault was crated in pressur transducer at 0.3sec. Simulation result   (Fig. 6) showed that 

estimator E2 estimates both the physical parameters correctly where as estimator E1 and E3 fail. Corresponding  

fault flags were set (‘FS Flag_1’, ‘FS Flag_3’, ‘BM Flag_1’ and ‘BM Flag_3’ are high) which prove the fault in 

pressure transducer as per D-Matrix.   

To introduce the fault in flex-seal stiffness, the value of the same was increased to 1800 kg-m/deg in 

the truth model and during simulation it was observed that all three estimators (E1, E2 and E3) had successfully 

estimated this new value (Fig. 7) and all the fault flags corresponding to flex-seal stiffness i.e ‘FS flag_1’, ‘FS 
flag_2’ and ‘FS flag_3’ were set to high (1).  
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Similarly to simulate the fault in bulk-modulus, the value of the bulk-modulus in the truth model was 

decreased to 1000 kg/cm2. Simulation result (Fig. 8) showed estimated this new value of bulk-modulus which 

set all the fault flags corresponding to bulk-modulus i.e. ‘BM flag_1’, ‘BM flag_2’ and ‘BM flag_3’ to high (1). 

As per D-matrix, the status of the flags clearly proved the fault in flex-seal stiffness and Bulk-moduls. 

 

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

Se
al 

St
iff

ne
ss

 

 
Nom val

E1

E2

E3

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

Bu
lk 

M
od

ulu
s

Time(sec)

 

 

Nom val

E1

E2

E3

 
Fig.5: Estimated Physical Parameters during LVDT fault 

 

 
Fig.6: Estimated Physical Parameters during Pressure Transducers fault 

 

 
Fig.7: Estimated Physical Parameters during Flex-Seal Stiffness fault 
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Fig.8: Estimated Physical Parameters during  Bulk-Modulus fault 

 

V. CONCLUSIONS AND FUTURE SCOPE OF THE WORK 
This paper presents, the sensor and process fault (in the form of parametric deviations) detection using 

Extended Kalman Filter (EKF) in an electro-hydraulic actuator driven flex nozzle control system. Multiple 
EKFs are used to detect the sensor and process faults. The D-matrix obtained from the estimated signals has 

shown the successful isolation of sensor or parametric fault in electrohydraulic actuation systems.  The present 

approach described in this paper can be used for conitinuous health monitoring of an electro hydraulic actuator 

of tactical aerospace vehicle with respect to process or sensor fault. 
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