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Abstract:- The critical buckling load and the natural frequency of frame structures are usually 

determined to avoid failures due to instability and resonance. Classical analyses are intractable and 
many analysts resort to numerical method of analysis using the traditional 4x4 matrix stiffness 

systems, which also have great limitation. This work presents new 5x5 stiffness matrices for classical 

and effective stability and dynamic analyses of line continua. Energy variational principle was 

employed in developing the matrices, with five term Mclaurin’s polynomial series as the shape 

function. A central deflection node was considered, making a total of five deformable nodes. The new 

5x5 matrices were derived by minimizing the geometric work and kinetic energy of the line continuum 

of five term shape function. They were employed, as well as the traditional 4x4 matrices, in classical 

stability and free vibration analyses of four line continua and a portal frame. The results from the new 

5x5 matrices were very close to exact results, with average percentage differences of 2.55% for 

stability and 0.14% for free vibration, whereas those from the traditional 4x4 matrices differed greatly 

from exact results, with average percentage differences of 23.73% for stability and 14.72% for free 

vibration. Thus, the newly developed stiffness matrices are suitable for stability and dynamic analyses 
of line continua and should be used by structural engineering analysts accordingly. 
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I. INTRODUCTION 
Stability analysis of multi-storey-building frames is a necessary step in determining the critical 

buckling load so as to avoid subjecting the frame to loads beyond critical values. It is an established fact that 

most buildings collapse due to instability of the column elements rather than foundation failures, excessive 

deflection, or exceeding flexural and axial stresses on the frame elements.  It is also well known that vibrations 

induce inertia stresses which augment the static stresses, resulting in very high stresses in the frame. Failure 

occurs when the stress capacities of the frame elements are exceeded. However, the most dangerous 
phenomenon is resonance, which occurs when the frame vibrates at its natural frequency. Thus, it is important to 

always verify the critical buckling load and the natural frequency of the frame. Classical analyses that treat each 

element as a whole are somewhat intractable because of the great number of elements usually involved in multi-

storey frames. Therefore, many analysts resort to numerical method of analysis using the traditional 4 x 4 matrix 

stiffness systems such as that given by Yoo and Lee (2011) as expressed in equation for stability analysis and 

that given by Chopra (1995) as expressed in equation 2 for dynamic analysis. Unfortunately, such numerical 

approachesare also tedious (Melosh, 1963; Long, 1978, 1992, 2009; Cook et al., 1989; Huebner et al., 1995; 

Bathe, 1996; Zienkiewicz and Taylor, 2000) and frequently give results that differ greatly with exact classical 

results. Moreover, as observed by Ibearugbulem et al. (2013), the traditional 4 x 4 stiffness matrix and its load 

vector cannot classically analyse flexural line continua except using them numerically (more than one element 

in one analysis). This difficulty in using the traditional classical approach is evident in the works of Iyengar 
(1988), Chopra (1995), and Yoo and Lee (2011). Hence, there is need for a classical matrix approach that would 

be less cumbersome and at the same time give results that are close to exact results. Ibearugbulem et al. (2013) 

developed a 5 x 5 stiffness matrix system capable of classically analysing bending of line continua of different 

boundary conditions, as shown in equation 3. This work presents new stiffness matrices for classical and 

effective stability and dynamic analyses of line continua. These5 x 5 matrices of geometry and inertia are based 

on the same principle of introducing a central nodal deflection in the line continuum used by Ibearugbulem et al. 

(2013).  
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II. NEW 5 X 5 MATRICES FOR STABILITY AND DYNAMIC ANALYSES 
The shape function given by Ibearugbulem et al. (2013) is as shown in equation (4). 

𝑊 𝑥 =  𝑎0 +  𝑎1𝑋 + 𝑎2𝑋
2 + 𝑎3𝑋

3 + 𝑎4𝑋
4                                                                        (4) 

Stability and vibration energy fuctionals given by El-Naschie(1990) are as shown in equations (5) and (6) 

respectively. 

Ug = −
𝑃

2
 
𝑑𝑤

𝑑𝑥

𝐿

0

𝑑𝑥                                                                                                                                (5) 

Um = −
𝑚𝜔2

2
 𝑤2
𝐿

0

𝑑𝑥                                                                                                                          (6) 

Substituting equation (4) in equations (5) and (6) and minimizingthem in variational principleresults in 

equations (7) and (8) respectively. 
dUg

𝑑∆
 =  𝐾𝑔 . [∆]                                                                                                                                       7  

dUm

𝑑∆
 =  𝐾𝑚 . [∆]                                                                                                                                   8  

Where∆ 𝑖𝑠 𝑡𝑕𝑒 𝑛𝑜𝑑𝑎𝑙 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  9 .                                               
[∆]𝑇 =  𝑤1 𝜃1 𝑤2 𝑤3 𝜃3                                                                                                        (9) 
Kg and Km are the required new 5x5 stiffness matrices for stability and dynamic (vibration) analyses of line 

continua as expressed in equations (10) and (11) respectively. 

 

 

 

III. CLASSICAL APPLICATION TO STABILITY AND FREE VIBRATION ANALYSES 
1. Four line continua with the following boundary conditions were analysed for critical buckling loads 

and fundamental natural frequencies using the new 5 x 5 and the traditional 4 x 4 stiffness systems: 

i. P – R line continuum: one end is pinned and the other end is on roller. 
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ii. C – C line continuum: both ends are clamped. 

iii. C – R line continuum: one end is clamped and the other end is on roller. 

iv. C – F line continuum: one end is clamped and the other end is free. 
 

2. The portal frame shown in figure 1 was also analysed for critical buckling loads and fundamental 

natural frequencies using the new 5 x 5 and the traditional 4 x 4 stiffness systems. 

 

IV. RESULTS AND DISCUSSIONS 
The results of the stability and free vibration analyses of line continua of four different boundary 

conditions are presented in tables 1 and 2, together with results from classical exact solutions.The results of the 

stability and free vibration analyses of the portal frame are presented in table 3. It can be seen from tables 1 and 

2 that the results from the traditional 4 x 4 stiffness system differ very much from the exact results, except for C 
– F line continuum, with average percentage differences of 23.73% for stability and 14.72% for free 

vibration.The highest differencesare 48.59% for stability and 32.94% for free vibrationwith C – R line 

continuum. It was not possible to analyse C – C line continuum with the traditional 4 x 4 stiffness system. These 

results clearly show that the traditional 4 x 4 stiffness system is not suitable for multi storey frame analysis.  

On the other hand, the results for the new 5 x 5 stiffness systemare very close to the exact results, the highest 

percentage differences being 6.46% for stability and 0.36 % for free vibration, with average percentage 

differences of 2.55% for stability and 0.14 % for free vibration.Thus, the new 5 x 5 stiffness system would be 

suitable for multi storey frame analysis.  

It can be seen from table 3that the resultsobtained using the traditional 4 x 4 stiffness system differvery 

much from those obtained using the new 5 x 5 stiffness system for classical analysis of portal frame, the 

percentage differences being 73.48% for stability and 50.10% for free vibration. This wide difference could be 
due to the fact that, as previously observed, the traditional 4 x 4 stiffness system is not suitable for classical 

analysis but could be good for use in numerical analysis.  

It can easily be concluded that the newly developed stiffness matrices are suitable for stability and 

dynamic analyses of line continua and should be used by structural engineering analysts accordingly. 

 

Table 1: Critical buckling load of the continuum, Pcr  (EI/L2) from classical analysis 

Continua 

Boundary 

Conditions 

Exact Result 

(Pcr) Result from  

4 X 4 stiffness system  

(Pcr) 

Percentage 
Difference 

With Exact 

Result 

Result from  

5 X 5 stiffness system  

(Pcr) 

Percentage 

Difference With 

Exact Result 

P - R BEAM 9.87 12.02 21.78318136 9.88 0.10 

C - C BEAM 39.45 Impossible -- 42 6.46 

C -R BEAM 20.19 30 48.5884101 20.92 3.62 

C - F BEAM 2.47 2.49 0.809716599 2.47 0.00 

Average % difference 23.72710269   2.55 

 

𝐓𝐚𝐛𝐥𝐞𝟐: Fundamental natural frequency, 𝛚   
𝐄𝐈

𝐦𝐋𝟒
  from classical analysis 

Continua 

Boundary 

Conditions 

Exact Result 

(ω) Result from  

4 X 4 stiffness system  

(ω) 

Percentage 

Difference With 

Exact Result 

Result from  

5 X 5 stiffness system  

 (ω) 

Percentage 

Difference With 

Exact Result 

P - R BEAM 9.87 10.95 10.94224924 9.87 0.00 

C - C BEAM 22.37 Impossible -- 22.45 0.36 

C -R BEAM 15.42 20.5 32.94422827 15.45 0.19 

C - F BEAM 3.52 3.53 0.284090909 3.52 0.00 

AVERAGE % DIFFERENCE 14.72352281 

  

0.14 

(EI) 
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Table 3: Result for Portal frame Analysis 

Analysis 5 x 5 Stiffnes system 

4 x 4 

Stiffness 

system 

Percentage difference 

with 5 x 5 Stiffness 

system 

Critical buckling load, Pcr 
EI

L2
  

2.704 0.7172 73.48 

Fundamental natural frequency, ω  
EI

mL4
  

4.8555 2.4228 50.10 

 

 
Figure 1: Portal frame for stability and free vibration analysis 
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