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Abstract:- The proposed   multi resolution fractals coders are image compression schemes that 

combine wavelets and fractals transforms. The main idea behind all fractal algorithms is to exploit the 

similarities present within many natural images: one block image is represented by an affine transform 

of larger block taken from the image it self .The characteristics property of fractal coders is to exploit 

similarities between scales. Wavelets transforms perform Multiresolution decompositions of  images 

,i.e decomposition of the originals  images into sub images at different scales. Standard DWT (Discrete 

Wavelet Transform), being non-redundant, is a very powerful tool for many non-stationary Signal 

Processing applications.  It presents a detailed review of Wavelet Transforms (WT) including standard 

DWT and its extensions. Denoising and Edge detection applications are investigated with DT-DWTs. 

Promising results are compared with other DWT extensions, and with the classical 

approaches..Multiresolution fractals coders introduces degrees of freedom on these constraints   The 

research is includes other extensions of the Multiresolution fractal coders are wavelet transform and 

fractals are wavelet transform 

 

Keywords:- Multi resolution, wavelets transforms, fractals transforms 

 

I. INTRODUCTION 
The main idea behind all fractal coding algorithms is to exploit the similarities present within many 

natural images: one block of an image is represented by an affine transform of another larger block taken from 

the image itself .The characteristic property of fractal coders is to exploit similarities between different scales. 

Wavelet transforms perform multiresolution decompositions of images, i.e, decompositions of the original 

images into sub images at different scales. The translation of the fractal property in the wavelet transform 

domain is straightforward: multiresolution decompositions through wavelet transforms of fractal coded images 

reveal strong relationships between sub images at different scales. These relationships limit the frequency 

content. Multiresolution fractal coders introduce degrees of freedom on these constraints 

A „wavelet‟ is a small wave which has its energy concentrated in time. It has an oscillating wavelike 

characteristic but also has the ability to allow simultaneous time and frequency analysis and it is a suitable tool 

for transient, non-stationary or time-varying phenomena .Wavelets are used to characterize a complex pattern as 

a series of simple patterns and coefficients that, when multiplied and summed, reproduce the original pattern. 

 

 
Fig Representation of wave and wavelet 

 

Waves are smooth, predictable and everlasting, whereas wavelets are of limited duration, irregular and 

may be asymmetric. Waves are used as deterministic basis functions in Fourier analysis for the expansion of 

functions (signals), which are time-invariant, or stationary. The important characteristic of wavelets is that they 

can serve as deterministic or non-deterministic basis for generation and analysis of the most natural signals to 

provide better time-frequency representation, which is not possible with waves using conventional Fourier 

analysis 

The wavelet analysis procedure is to adopt a wavelet prototype function, called an „analysing wavelet‟ 

or „mother wavelet‟. Temporal analysis is performed with a contracted, high frequency version of the prototype 

wavelet, while frequency analysis is performed with a dilated, low frequency version of the same wavelet . 
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Mathematical formulation of signal expansion using wavelets gives Wavelet Transform (WT) pair, which is 

analogous to the Fourier Transform (FT) pair. Discrete-time and discrete-parameter version of WT is termed as 

Discrete Wavelet Transform (DWT). DWT can be viewed in a similar framework of Discrete Fourier Transform 

(DFT) with its efficient implementation through fast filterbank algorithms similar to Fast Fourier Transform 

(FFT) algorithms. 

Wavelets are functions defined over a finite interval. The basic idea of the wavelet transform is to 

represent an arbitrary function ƒ(x) as a linear combination of a set of such wavelets or basis functions. These 

basis functions are obtained from a single prototype wavelet called the mother wavelet by dilations (scaling) and 

translations (shifts). The purpose of wavelet transform is to change the data from time-space domain to time-

frequency domain which makes better compression results. The simplest form of wavelets, the Haar wavelet 

function .As discussed earlier, for image compression, loss of some information is acceptable. The fundamental 

idea behind wavelets is to analyze the signal at different scales or resolutions, which is called multi resolution. 

Wavelets are a class of functions used to localize a given signal in both space and scaling domains. A family of 

wavelets can be constructed from a mother wavelet. Compared to Windowed Fourier analysis, a mother wavelet 

is stretched or compressed to change the size of the window. In this way, big wavelets give an approximate 

image of the signal, while smaller and smaller wavelets zoom in on details. Therefore, wavelets automatically 

adapt to both the high-frequency and the low-frequency components of a signal by different sizes of windows. 

Any small change in the wavelet representation produces a correspondingly small change in the original signal, 

which means local mistakes will not influence the entire transform. The wavelet transform is suited for non 

stationary signals, such as very brief signals and signals with interesting components at different scales.The need 

of simultaneous representation and localisation of both time and frequency for non-stationary signals (e.g. 

music, speech, images) led toward the evolution of wavelet transform from the popular Fourier transform. 

Different „time-frequency representations‟ (TFR) are very informative in understanding and modelling of WT 

 

II. DISCRETE WAVELET TRANSFORM 

Discrete wavelet transform is a multi resolution decomposition of a signal. Considering an image, 1 

level .DWT involves applying a low pass and a high pass filters along the columns and then the rows 

respectively. The low pass filter applied along a certain direction extracts the low frequency (approximation) 

coefficients of a signal. On the other hand, the high pass filter extracts the high frequency (detail) coefficients of 

a signal. In order to compare wavelet methods, a MinImage was originally created to test one type of wavelet 

and the additional functionality was added to Image to support other wavelet types, and the EZW coding 

algorithm was implemented to achieve better compression results. 

The wavelet image compressor, MinImage, is designed for compressing either 24-bit true color or 8-bit gray 

scale digital images. It was originally created to test Haar wavelet using sub band coding. To compare different 

wavelet types, other wavelet types, including Daubechies and birothogonal spine wavelets were implemented.. 

A very useful property of MinImage is that different degrees of compression and quality of the image can be 

obtained by adjusting the compression parameters through the interface. The user can trade off between the 

compressed image file size and the image quality. The user can also apply different wavelets to different kind of 

images to achieve the best compression results. 

For transform based compression, JPEG compression schemes based on DCT (Discrete Cosine 

Transform) have some advantages such as simplicity, satisfactory performance, and availability of special 

purpose hardware for implementation. However, because the input image is blocked, correlation across the 

block boundaries cannot be eliminated. This results in noticeable and annoying “blocking artifacts”' particularly 

at low bit rates .wavelet-based schemes achieve better performance than other coding schemes like the one 

based on DCT. Since there is no need to block the input image and its basis functions have variable length, 

wavelet based coding schemes can avoid blocking artifacts. Wavelet based coding also facilitates progressive 

transmission of images. 

In mathematics, a wavelet series is a representation of a square-integral(real-or complex-

valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, 

mathematical definition of an orthonormal wavelet and of the integral wavelet transform. 

A function  is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is 

a complete orthonormal system, for the Hilbert space  of square integrable functions. The Hilbert basis 

is constructed as the family of functions  by means 

of dyadic translations and dilations of , 
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for integers . This family is an orthonormal system if it is orthonormal under the inner product 

 

where  is the Kronecker delta and  is                       standard inner      

product  on  The requirement of completeness is that every 

function  may be expanded in the basis as 

 
with convergence of the series understood to be convergence in norm. Such a representation of a function f is 

known as a wavelet series. This implies that an orthonormal wavelet is self-dual. 

2.2 Wavelet transform: 

The integral wavelet transform is the integral transform defined as 

 

The wavelet coefficients  are then given by 

 

Here,  is called the binary dilation or dyadic dilation, and  is the binary or dyadic 

position. 

2.3 Wavelet compression: 

Wavelet compression  a form of data compression well suited for image compression (sometimes 

also video compression and audio compression). Notable implementations are JPEG 2000, DjVu and ECW for 

still images, REDCODE, CineForm, the BBC's Dirac, and Ogg Tarkin for video. The goal is to store image data 

in as little space as possible in a file. Wavelet compression can be either lossless or lossy. Using a wavelet 

transform, the wavelet compression methods are adequate for representing transients, such as percussion sounds 

in audio, or high-frequency components in two-dimensional images, for example an image of stars on a night 

sky. This means that the transient elements of a data signal can be represented by a smaller amount of 

information than would be the case if some other transform, such as the more widespread discrete cosine 

transform, had been used. Wavelet compression is not good for all kinds of data: transient signal characteristics 

mean good wavelet compression, while smooth, periodic signals are better compressed by other methods, 

particularly traditional harmonic compression (frequency domain, as by Fourier transforms and related). 

First a wavelet transform is applied. This produces as many coefficients as there are pixels in the image (i.e.: 

there is no compression yet since it is only a transform). These coefficients can then be compressed more easily 

because the information is statistically concentrated in just a few coefficients. This principle is called transform 

coding. After that, the coefficients are quantized and the quantized values are entropy encoded and/or run length 

encoded. A few 1D and 2D applications of wavelet compression use a technique called "wavelet footprints The 

wavelet transform can provide us with the frequency of the signals and the time associated to those frequencies, 

making it very convenient for its application in numerous fields. For instance, signal processing of accelerations 

for gait analysis,  and for fault detection 

.  

III. FRACTAL COMPRESSION 
Fractal compression is a lossy compression method for digital images, based on fractals. The method is best 

suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the 

same image Fractal algorithms convert these parts into mathematical data called "fractal codes" which are used 

to recreate the encoded image. Fractal image representation can be described mathematically as an iterated 

function system (IFS). 
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3.1 For Binary Images: 

We begin with the representation of a binary image, where the image may be thought of as a subset of 

. An IFS is a set of contraction mappings ƒ1,...,ƒN, 

 

According to these mapping functions, the IFS describes a two-dimensional set S as the fixed point of the 

Hutchinson operator 

 

That is, H is an operator mapping sets to sets, and S is the unique set satisfying H(S) = S. The idea is to 

construct the IFS such that this set S is the input binary image. The set S can be recovered from the IFS by fixed 

point iteration: for any nonempty compact initial set A0, the iteration Ak+1 = H(Ak) converges to S. The set S is 

self-similar because H(S) = S implies that S is a union of mapped copies of itself: 

 

So we see the IFS is a fractal representation of S. 

3.2 Extension to Grayscale: 

IFS representation can be extended to a grayscale image by considering the image's graph as a subset of 

. For a grayscale image u(x,y), consider the set S = {(x,y,u(x,y))}. Then similar to the binary case, S is 

described by an IFS using a set of contraction mappings ƒ1,...,ƒN, but in , 

 

3.3 Encoding 

A challenging problem of ongoing research in fractal image representation is how to choose the ƒ1,...,ƒN such 

that its fixed point approximates the input image, and how to do this efficiently. A simple approach
[1]

 for doing 

so is the following: 

1. Partition the image domain into blocks Ri of size s×s. 

2. For each Ri, search the image to find a block Di of size 2s×2s that is very similar to Ri. 

3. Select the mapping functions such that H(Di) = Ri for each i. 

In the second step, it is important to find a similar block so that the IFS accurately represents the input image, so 

a sufficient number of candidate blocks for Di need to be considered. On the other hand, a large search 

considering many blocks is computationally costly. This bottleneck of searching for similar blocks is why 

fractal encoding is much slower than for example DCT and wavelet based image representations. 

3.4 Features: 

With fractal compression, encoding is extremely computationally expensive because of the search used to find 

the self-similarities. Decoding, however is quite fast. While this asymmetry has so far made it impractical for 

real time applications, when video is archived for distribution from disk storage or file downloads fractal 

compression becomes more competitive. At common compression ratios, up to about 50:1, Fractal compression 

provides similar results to DCT-based algorithms such as JPEG.At high compression ratios fractal compression 

may offer superior quality. For satellite imagery, ratios of over 170: have been achieved with acceptable results. 

Fractal video compression ratios of 25:1-244:1 have been achieved in reasonable compression times (2.4 to 66 

sec/frame).  Compression efficiency increases with higher image complexity and color depth, compared to 

simple grayscale images. 

In Fractal Image Coding the image to be encoded is partitioned into non-overlapping range blocks. For 

each of these range blocks a larger domain block of the same image has to be determined such that a contractive 

(geometrical and luminance) transformations of this block is a good approximation of the range block. At the 

decoder all transformations are iteratively applied to an arbitrary initial image which then converges to the 

fractal approximation of the image. Fractal Coding relies on the existence of self similarities within the image. 

As “fractal self similarity” can only be found in certain regions of natural images, fractal coding fails for non-

fractal image contents. In its original form fractal coding suffered from low coding efficiency, difficulties to 

obtain high quality encoding of images and blocking artifacts at low bit rates and exhaustive inherent coding 

time. Blocking artifacts can be avoided, if fractal coding is performed in the wavelet domain. Fractal coding 

assumes that all wavelet sub trees that make up an image can be described by other wavelet sub trees from 

coarser scales. In the image compression field, high compression is needed without losing the quality of  an 

image. 
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IV. RELATED WORK 
Fractal image coding in the wavelet domain  has quite different characteristics from the spatial domain 

coders and can be interpreted as the prediction of a set of wavelet coefficients in the higher frequency subbands 

from those in the lower ones. A contractive mapping associates a domain tree of wavelet coefficients with a 

range tree that it approximates. 

Various structures have been used for the domain to range mappings. The potential of applying the 

theory of iterated function systems to the problem of image compression was recognized by Barnsley and Sloan 

. They patented their idea in 1990 . A method of fractal encoding that utilizes a system of domain and range sub 

image blocks was introduced . This approach is the basis for the most fractal encoders today. It has been 

enhanced by Fisher and a number of others. This block fractal encoding method partitions an image into disjoint 

range sub images and defines a system of overlapping domain sub images. For each range, the encoding process 

searches for the best domain and affine transformation that maps that domain onto the range. Image structure is 

mapped onto the system of ranges, domains and transformations. Much of the recent research in fractal image 

compression has focused on reducing long encoding times. Wavelet transform approaches to image compression 

exploit redundancies in scale. Wavelet transform data can be organized into a sub tree structure that can be 

efficiently coded. In Hybrid fractal-wavelet techniques  domain-range transformation idea of fractal encoding is 

applied to the realm of wavelet sub trees. Improved compression and decoded image fidelity is obtained. A 

range tree is fractally encoded by a bigger domain tree. The approximating procedure is very similar to that in 

the spatial domain: sub sampling and determining the orientation and scaling factor. Note that one does not need 

an additive constant because the wavelet tree does not have a constant offset. Matching the size of a domain tree 

with that of a range tree by truncating all coefficients in the highest subbands of the domain tree is called 

Subsampling. The orientation operation consists of a combination of a 90 degree rotation and a flip, and it is 

done within each subband. A switch of HL (High-Low) and LH (Low-High) subbands is the next step. The scale 

factor is then multiplied witheach wavelet coefficient in the tree. 

 

V. METHODOLOGY 
5.1 Encoder: 

The block diagram of the Fractal based wavelet encoderis shown in Fig. 1. The image is decomposed 

into several subbands by applying DWT (discrete wavelet transform). Haar wavelet is applied two times to the 

original image. It transforms the image into wavelet coefficients. The approximation subband wavelet 

coefficients are taken from the transformed image.The image is divided into range blocks. The variance of range 

blocks are calculated using the following 

equation 1. 

                        Var{R}= 1 

                      B2 Σ (ri, j – μR)2 0≤i, j≤B---------(1) 

where R: Range block, B: Size of the block, ri, j: Gray 

level value at position (i, j), μR: Mean of the block. The 

principle behind this method is the blocks which are having the minimum variance can be coded by mean; 

otherwise it is coded by contractive affine transform. The first one is representing transformation whether it is of 

affine or mean type and the next one is the domain block position and the isometric transformation type. If the 

range block is coded by mean, then that block is represented by 1 and other block by 0 if it is affine 

transformation. It is followed by x position and y position which is represented by a maximum of two digits 

each. It also contains the rotation number which describes the type of isometric transformations. There are 

totally eight isometric transformations. Hence it takes a value between 0 and 7. The above information is kept in 

a file, which is the coded data of the input image. 

 

5.2 Decoder: 

The Fractal based Wavelet Compressed (FWC) image from encoder is the input to the corresponding 

decoder. The coded file is read one by one. If the bit is 1, then the block is replaced by mean pixel. If it is 0, then 

the subsequent block position is read from coded file. Hence, the block is replaced by the corresponding domain 

block which is taken from domain pool using block position. 

 

VI. RESULTS AND EVALUATION 
Wavelet transform can represented in continuous as well as in discrete domain as 

The practical usefulness of DWT comes from its Multi-Resolution Analysis (MRA) ability and efficient Perfect 

Reconstruction (PR) filterbank structures 

Multiresolution analysis (or Multiscale analysis) consists of a sequence of embedded subspaces …V
2 
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The MRA follows the following conditions:  

1. V
j 
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, j ∈ Ζ  
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It is clear from the performance results of table that the 

denoising capability of redundant CWT (namely DT-

DWT(K)) is superior than the standard DWT for audio 

speech with lower initial SNR. In both cases, hard 

thresholding and Wiener filtering perform poorer 

whereas soft thresholding and raised-cosine-law perform 

better.
 

 

 

 

Table: The MSE and SNR of denoised audio signal (y) 

from the observed noisy signal (x) with respect to 

original signal (s). The initial value of MSE and SNR for 

noisy signal are MSEi= 824 , SNRi= 5.00 dB . The 

wavelets used for standard DWT is „bior6.8‟ and for DT-

DWT(K) is „near_sym_b‟ and „qshift_b‟. The maximum 

decomposition level employed is J = log
2
(N), where N = 

65536 = size of audio signal. 

 

 
 

Original signal Noisy signal 

 

FIG: Spectrograms of audio signals with standard DWT based denoising 
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5.00  
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(dB)  
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343  8.81  212  10.9

0  
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237  10.40  175  11.7

2  

Wiener  625  6.20  630  6.17  

Raised-

cosine  

205  11.04  161  12.1

0  
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Fig:Wavelet Transform based methods for denoising of „Lenna‟ image with reference to table values 

 

Performance Measure  

The quantitative measures for 2-D denoising, namely MSE (Mean Square error) and PSNR (Peak Signal to 

Noise Ratio) are determined as: 

MSE = 1/NM (1ΣΣ=[s(n,m)-y(n,m)]2 

PSNR = 10 log
10

{255/MSE} 

where, s is an original image and y is a recovered image from a noisy image x. The qualitative 

performance is evaluated through human visual system by observing the recovered images with various 

algorithms. 

The performance results of various algorithms can be evaluated for low and high noise conditions as follows: 

1 Under low noise conditions (σ=10), conventional filtering methods namely Median and Weiner perform better 

than standard DWT. Though the performance of Mean filter is poorer than standard DWT. 

2. The denoising capability (σ=10) of both DT-DWTs is better than SWT and standard DWT for all natural 

images as well as for synthetic „Pattern‟ image. The performance of both DT-DWTs is nearly same with DT-

DWT(K) slightly better then DT-DWT(S). 

3. Under high noise conditions (σ=40), all conventional filtering methods give poor denoising results than even 

standard DWT. For all images, performance of both DT-DWTs is better than SWT and standard DWT. The 

performance of DT-DWT(K) is the best using both hard and soft thresholding. 

4. The lowest values of optimum threshold (for both hard and soft thresholding) for DT-DWT(K) in all noise 

conditions (σ= 10 or 40) suggest its superior denoising capabilities with improved feature preservation (with less 

blurring). 

5. The effect of improved directionality on denoising for redundant CWT (both DT-DWTs) compared to less 

directional standard DWT is quite clear for „pattern‟ image for all noise conditions. 

6. From human visual perspective, the performance of various algorithms for high noise conditions is quite 

clear. The performance of DT-DWTs is distinguishably superior to standard DWT. But under low noise 

conditions, minute differences are very difficult to perceive hence all wavelet based methods seem to have 

nearly same visual effects. 

Future scope: 

Future work includes other extensions of the  DWT is extensively used in its non-redundant form known as 

standard DWT. The filterbank implementation of standard DWT for images is viewed as 2-D DWT. There are 

certain applications for which the optimal representation can be achieved. through more redundant extensions of 

standard DWT such as WP (Wavelet Packet Transform) and SWT (Stationary Wavelet Transform). 

 

VII. CONCLUSION 
DWTs are superior to standard for all 1-D and 2-D denoising application. The choice of shrinkage 

(thresholding) strategy, and selection of optimum threshold value are very crucial for wavelet shrinkage 

denoising using any form of WT. DT-DWTs are especially efficient in higher noise conditions. Entropy based 

WP is not suitable for generalised denoising applications in poor SNR conditions. Multiresolution fractal coders 

present all the advantages of conventional fractal coders and propose solutions to some of their drawbacks.  
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