
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 8, Issue 6 (September 2013), PP.23-28

www.ijerd.com 23 | Page

Design and Implementation of Vedic Multiplier

 C.Sheshavali M.Tech
1
, K.Niranjan kumar Asst.professor

2

1,2
Department of ECE, PBR VITs, SPSR Nellore (district),

JNTUA, Ananthapur, India.

Abstract:- In this paper, a novel multiplier architecture based on ROM approach using Vedic Mathematics is

proposed. This multiplier's architecture is similar to that of a Constant Coefficient Multiplier (KCM). However,

for KCM one input is to be fixed, while the proposed multiplier can multiply two variables. The proposed

multiplier is implemented on a Cyclone III FPGA, compared with Array Multiplier and Urdhava Multiplier for

both 8 bit and 16 bit cases and the results are presented. The proposed multiplier is 1.5 times faster than the

other multipliers for 16x16 case and consumes only 76% area for 8x8 multiplier and 42% area for 16x16

multiplier.

Keywords:- KCM; Urdhava; Vedic Maths; Array Multiplier; FPGA.

I. INTRODUCTION
 Multiplication is one of the more silicon-intensive functions, especially when implemented in

Programmable Logic. Multipliers are key components of many high performance systems such as FIR filters,

Microprocessors, Digital Signal Processors, etc. A system's performance is generally determined by the

performance of the multiplier, because the multiplier is generally the slowest element in the system.

Furthermore, it is generally the most area consuming. Hence, optimizing the speed and area of the multiplier is a

major design issue.

 Vedic mathematics [I] is the ancient Indian system of mathematics which mainly deals with Vedic

mathematical formulae and their application to various branches of mathematics. The word 'Vedic' is derived

from the word 'Veda' which means the store-house of all knowledge. Vedic mathematics was reconstructed from

the ancient Indian scriptures (Vedas) by Sri Bharati Krshna Tirthaji (1884-1960), after his eight years of

research on Vedas [1]. According to his research, Vedic mathematics is mainly based on sixteen principles or

word-formulae which are termed as Sutras. This is a very interesting field and presents some effective

algorithms which can be applied to various branches of Engineering such as Computing and Digital Signal

Processing.

II. ARRAY MULTIPLIER
In Array multiplier [2], AND gates are used for generation of the bit-products and adders for

accumulation of generated bit products. All bit-products are generated in parallel and collected through an array

of full adders or any other type of adders. Since the array multiplier is having a regular structure, wiring and the

layout are done in a much simplified manner. Therefore, among other multiplier structures, array multiplier

takes up the least amount of area. But it is also the slowest with the latency proportional to O (Wct), where Wd

is the word length of the operand. Example I describes the multiplication process using array multiplier and Fig.l

depicts the structure of the same. Instead of Ripple Carry Adder (RCA), here Carry Save Adder (CSA) is used

for adding each group of partial product terms, because RCA is the slowest adder among all other types of

adders available. In case of multiplier with CSA [5], partial product addition is carried out in Carry save form

and RCA is used only in final addition.

Example 1: (1101 x 1110) = 1 0 1 1 0 1 1 0

1 1 0 1

1 1 1 0 X

 0 0 0 0

 1 1 0 1 --- Left Shift by I bit

 1 1 0 1 --- Left Shift by 2 bit

 1 1 0 1 --- Left Shift by 3 bit

 1 0 1 1 0 1 1 0

Design and Implementation of Vedic Multiplier

www.ijerd.com 24 | Page

Here from the above example it is inferred that partial products are generated sequentially, which

reduces the speed of the multiplier. However the structure of the multiplier is regular.

Fig. 1: Array Multiplier using CSA Hardware Architecture

III. URDHAVA MULTIPLIER
Urdhava Tiryakbhyam [1] [3] (Vertically and Crosswise), is one of Sixteen Vedic Sutras and deals with

the multiplication of numbers. The sutra is illustrated in Example 2 and the hardware architecture is depicted in

Fig.3. In this example two decimal numbers (31 x 35) are multiplied. Line diagram for the multiplication of two,

three and four digit numbers is shown in Fig. 2 using Urdhava Method. The digits on the two ends of the line are

multiplied and the result is added with the previous carry. When three or more lines are present, all the results

are added to the previous carry. The least significant digit of the number thus obtained acts as one of the result

digit and the rest act as the carry for the next step. Initially the carry is taken to be zero.

Example 2: 40x45 =1800

4 0 0 4 0 4

4 5X 5 X 4 5 4X

 -------- ---------------- -----------

 0 20 + 0 = 20 16+2=18

 -------- ---------------- -----------

 Carry to next stage

Answer: 40x45 =1800

Fig. 2: Line Diagram for Urdhava Multiplication of 2, 3 and 4 digits

 From the Example 2, it is observed that all the partial products are generated in parallel. So the speed of

the multiplier is higher compared to array multiplier.

 The above discussions can now be extended to multiplication of binary number system with the

preliminary knowledge that the multiplication of two bits a0 and b0 is just an AND operation and can be

implemented using simple AND gate. To illustrate this multiplication scheme in binary number system, consider

the multiplication of two binary numbers a3a2ala0 and b3b2blb0. As the result of this multiplication would be more

than 4 bits, the product is expressed as r7r6r5r4r3r2rlr0. Least significant bit r0 is obtained by multiplying the

Design and Implementation of Vedic Multiplier

www.ijerd.com 25 | Page

least significant bits of the multiplicand and the multiplier as shown in the Fig.2. The digits on both sides of the

line are multiplied and added with the carry from the previous step. This generates one of the bits of the result

(r0) and a carry (Cn). This carry is added in the next step and thus the process goes on. If more than one line are

there in one step, all the results are added to the previous carry. In each step, least significant bit acts as the

result bit and the other entire bits act as carry.

 For example, if in some intermediate step, we get 110, then 0 will act as result bit and 11 as the carry

(referred to as Cn in this text). It should be clearly noted that C n may be a multi-bit number. Thus the following

expressions (1) to (7) are derived:

r0 = a0b0 ... (1)

clrl = alb0 + aobl ... (2)

c2r2 = cl + a2b0 + alb1 + aob2 ... (3)

c3r3 = c2 + a3b0 + a2bl + alb2 + a0b3 ... (4)

c4r4 = c3 + a3bl + a2b2 + alb3 ... (5)

c5r5 = c4 + a3b2 + a2b3 ... (6)

c6r6 = c5 + a3b3 ... (7)

with c6r6r5r4r3r2r1rO being the final product. Partial products are calculated in parallel and hence the

delay involved is just the time it takes for the signal to propagate through the gates.

Fig.3 Urdhava Multiplier Hardware Architecture

 The main advantage of the Vedic Multiplication algorithm (Urdhava Tiryakbhyam Sutra) stems from

the fact that it can be easily implemented in FPGA due to its simplicity and regularity [3]. The digital hardware

realization of a 4-bit multiplier using this Sutra is shown in Fig. 3. This hardware design is very similar to that of

the array multiplier where an array of adders is required to arrive at the final product. Here in Urdhava, all the

partial products are calculated in parallel and the delay associated is mainly the time taken by the carry to

propagate through the adders.

IV. PROPOSED METHOD
The proposed method is based on ROM approach however both the inputs for the multiplier can be

variables. In this proposed method a ROM is used for storing the squares of numbers as compared to KCM

where the multiples are stored. Method: To find (a x b), first we have to find whether the difference between 'a'

and 'b' is odd or even. Based on the difference, the product is calculated using (8) and (9).

I. In case of Even Difference

Result of Multiplication= [Average]
2
- [Deviation]

2
... (8)

II. In case of Odd Difference

Result of Multiplication = [Average x (Average + 1)]-[Deviation x (Deviation+ I)] ... (9)

Where, Average = [(a+b)/2] and Deviation = [Average - smallest (a, b)]

Example 3 (Even difference) and Example 4 (Odd difference) depict the multiplication process. Thus

the two variable multiplication is performed by averaging, squaring and subtraction. To find the average

Design and Implementation of Vedic Multiplier

www.ijerd.com 26 | Page

[(a+b)/2], which involves division by 2 is performed by right shifting the sum by one bit. If the squares of the

numbers are stored in a ROM, the result can be instantaneously calculated. However, in case of Odd difference,

the process is different as the average is a floating point number. In order to handle floating point arithmetic,

Ekadikena Purvena - the Vedic Sutra which is used to find the square of numbers end with 5 is applied. Example

5 illustrates this. In this case, instead of squaring the average and deviation, [Average x (Average + 1)] -

[Deviation x (Deviation+ I)] is used. However,

instead of performing the multiplications, the same ROM is used and using equation (10) the result of

multiplication is obtained. n(n+l) = (n
 2
 +n) ... (10)

Here n 2 is obtained from the ROM and is added with the address which is equal to n(n+l). The sample

ROM contents are given in Table 1. TABLE 1: ROM CONTENTS Address Memory Content (Square)

Thus, division and multiplication operations are effectively converted to subtraction and addition

operations using Vedic Maths. Square of both Average and Deviation is read out simultaneously by using a two

port memory to reduce memory access time.

Example 3: 18 x 14=252

I. Find the difference between (18-14) = 4 → Even Number

II. For Even Difference, Product = [Average]
2
- [Deviation]

2

 i. Average = [(a+b)/2] = [(18+14)/2] = [32/2] = 16

 ii. smallest(a, b) = smallest(l8,14) =14

 iii. Deviation = Average - Smallest (a,b) = 16 -14 =2

III. Product = 16
2
-2

2
 = 256 - 4 = 252

Example 4: 16 x 13 = 208

I. Find the difference between (16-13) =3 →Odd Number

II. For Odd Number Difference find the Average and Deviation.

 i. Average = [(a+b)/2] = [(16+13)/2] = 14.5

 ii. Deviation=[Average - smallest(a,b)]= [14.5 - smallest(l6,13)] = [14.5 - 13] = 1.5

III. Product = (l4xI5) - (lx2) = 210 - 2 =208

Example 5: 25
2
=625

I. To find the square of 25, first find the square of 5 which is 25 and put 2 in the tens place and 5 in the ones

place of the answer respectively.

II. To find the number in the hundreds place, multiply 2 by its immediate next number, 3, which is equal to

(2x3) = 6

III. Answer 25
2
=625

 Fig.4 depicts the RTL view of the proposed multiplier for 4x4 as a sample case, implemented on a

Cyclone II device. 8x8 multiplier is implemented using ROM approach, by storing the squares of the numbers in

the memory starting from 0000 0000 to 1111 1111. The memory requirement for an 8x8 multiplication will be

8KB. But in the case of 16xl6 multiplier the memory requirement will be huge, 2
16

x32=2MB. So, in order to

reduce the memory requirements for higher order bit multiplication, (l6x16, 32x32, etc.) lower order (8x8)

multiplier can be instantiated[1 7]. By this process the constraint of larger memory requirements can be

overcome.

Fig. 4: RTL View of Proposed Multiplier (4x4)

Design and Implementation of Vedic Multiplier

www.ijerd.com 27 | Page

V. EXPERIMENTAL RESULTS
From the Table 2 and Table 3, it is inferred that the proposed multiplier is best suited for the

applications where the less area requires and speed is major considerations. This is achieved due to the feature

of multiplier that will consume only fewer logic elements for its implementation.

 Array Multiplier Urdhava Multiplier Proposed Multiplier

16x16 Multiplier 510 810 145

8x8 Multiplier 126 180 311

 Table: 2 Requirements of combinational logic functions

Array Multiplier Urdhava Multiplier Proposed Multiplier

61.277 50.952 23.87

 Table: 3 Time delay in nanoseconds for 16x16 Multipliers

Fig:5 For 16x16 Multipliers it will shows the time delay comparison

 Fig:6 For 16x16 Multipliers Area comparison

From the observation of simulation results for 8x8 and 16x16 multipliers in the case of proposed

multipliers it is clear that it is more efficient and comfortable for higher order multipliers i.e, greater than 8x8

multipliers

VI. CONCLUSION
Thus the proposed multiplier provides higher performance for higher order bit multiplication. In the

proposed multiplier for higher order bit multiplication i.e. for 16x16 and more, the multiplier is realized by

instantiating the lower order bit multipliers like 8x8. This is mainly due to memory constraints. Effective

memory implementation and deployment of memory compression algorithms can yield even better results.

REFERENCES
[1]. Swami Bharati Krishna Tirthaji, Vedic Mathematics. Delhi: Motilal Banarsidass Publishers, 1965.

[2]. K.K.Parhi "VLSI Digital Signal Processing Systems -Design and Implementation" John Wiley & Sons,

1999.

Design and Implementation of Vedic Multiplier

www.ijerd.com 28 | Page

[3]. Harpreet Singh Dhillon and Abhijit Mitra "A Digital Multiplier Architecture using Urdhava

Tiryakbhyam Sutra oj Vedic Mathematics" IEEE conference Proceedings, 2008.

[4]. Asmita Haveliya "A Novel Design for High Speed Multiplier .for Digital Signal Processing

Applications (Ancient Indian Vedic mathematics approach)" International Journal of Technology And

Engineering System(IJTES):Jan - March 2011- Vo12 .Nol

[5]. Raminder Preet Pal Singh, Parveen Kumar, Balwinder Singh "Perfimnance Analysis of'32-Bit Array

Multiplier with a Carry Save Adder and with a Carry-Look-Ahead Adder" International Journal of

Recent Trends in Engineering, Vol 2, No. 6, November 2009

[6]. Parth Mehta, Dhanashri Gawali "Conventional versus Vedic mathematical method for Hardware

implementation of a multiplier"2009 International Conference on Advances in Computing, Control,

and Telecommunication Technologies

[7]. Prabir Saha, Arindam Banerjee, Partha Bhattacharyya, Anup Dandapat ""High Speed ASIC Design of

Complex Multiplier Using Vedic Mathematics" Proceeding of the 2011 IEEE Students' Technology

Symposium 14-16 January, 20 II, lIT Kharagpur

[8]. H. D. Tiwari, G. Gankhuyag, C. M. Kim, and Y. B. Cho, "Multiplier design based on ancient Indian

Vedic Mathematics," in Proceedings IEEE International SoC Design Conference, Busan, Nov. 24-25,

200S,pp.65-6S

[9]. H. Thapliyal, M. B. Srinivas and H. R. Arabnia , "Design And Analysis oj a VLSI Based High

PerJormance Low Power Parallel quare Architecture", in Proc. Int. Conf. Algo. Math. Compo Sc., Las

Vegas, June 2005, pp. 72-76.

[10]. P. D. Chidgupkar and M. T. Karad, "The Implementation oj Vedic Algorithms in Digital Signal

Processing", Global J. oj /c'ngg. /c’Du., vol. 8, no.2, pp. 153-158, 2004.

[11]. H. Thapliyal and M. B. Srinivas, "High Speed Efficient N x N Bit Parallel Hierarchical Overlay

Multiplier Architecture Based on Ancient Indian Vedic Mathematics", EnJormatika Trans., vol. 2, pp.

225-22S, Dec. 2004.

[12]. Wakerly, J.F. "Digital Design-Principles and Practices", 2006, 4
th

 Edition. Pearson Prentice Hall.

[13]. J.Bhasker, "Verilog HDL Primer" BS P Publishers, 2003.

[14]. Himanshu Thapliyal, S. Kotiyal and M.B. Srinivas, "Design and Analysis of a Novel Parallel Square

and Cube Architecture Based on Ancient Indian Vedic Mathematics", Proceedings on 48th II/c'/c'/c'

International Midwest Symposium on Circuits and Systems (MWSCAS 2005),

