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Abstract:- B method is one of the common paradigms used in formal verification. It offers a strong verification 

domain as it based on a mathematical and logical approach. The proof obligations (properties that must be 

satisfied) are automatically generated from the model, also the available tools provides both automatic and 

interactive proofs. VHDL is a mature implementation domain where many synthesis and simulation tools are 

available. The work in this paper presents a technique to convert B machines into the corresponding VHDL 

implementation in order to implement a correct by construction system, which benefits from the advantages of 

both strong domains, and maintain the properties of the verified model. We reached for a method to cross the 

gap and convert the B machines into VHDL implementations and a tool was designed to apply the proposed 

technique. Five popular models were used as workbenches where we applied the developed technique. 

Simulation at some critical points was used to ensure that the generated VHDL satisfy the verified properties in 

the original B machine. 
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I. INTRODUCTION 
Throughout the previous years, the complexity and size of digital systems has increased dramatically, 

as a result design flow phases changed a lot. Simulation used to be the most common procedure to assure the 

correctness of a system under design, but it cannot exhaustively examine all the execution scenarios of the 

system. A different approach to validate a system by formally reasoning the system behavior is Formal 

verification, where the system implementation is checked against the requirements or the properties to be 

satisfied. The most common paradigms are based on theorem proving, model checking and language 

containment. 

People and products safety are directly affected by the reliability of automated systems. Safety aspects 

should be considered from early design stages up to operational stages and this needs a very accurate design 

approach [1]. This becomes more sophisticated in real time systems as real-time systems differ from untimed 

systems in that the correct behaviour relies on computation results plus the time on which they were produced. 

The resulting state-space explosion makes it infeasible to run a satisfactory number of simulation traces to 

achieve enough coverage of the state spaces and enough confidence in the design correctness within a project 

schedule. Even if it were feasible to have extensive coverage of the system, missing only single untested 

sequence of events may cause the system failure. 

The common approach for system design is to start the design cycle by implementing the basic 

requirements then starting to test and correct errors in the developed design. This “construct-by-correction” 

approach leads to a long and more expensive design cycle. 

Since the B method offers a strong framework for developing and verifying models at different abstraction 

levels, the verified B models can be used to develop “correct-by-construction” designs, but the problem is that 

some verified properties may be lost during converting the model into an implementation. VHDL is a mature 

implementation domain where many synthesis and simulation tools are available.  

Automatic conversion of the verified B models into implementation avoids losing any of the verified 

properties. In addition to providing an implementation directly mapped from the verified model which achieve 

“correct-by-construction” design approach.  

Also the developed implementation will take the advantages of both the verification B domain and the 

strong well matured VHDL implementation domain. 

The work in this paper presents a technique and a tool to convert B machines into the corresponding VHDL 

implementation in order to build a “correct- by-construction” system, which maintain the properties of the 

verified B model, and benefit from the advantages of both strong domains. 

http://www.cic-cairo.com/
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The paper starts by explaining the definition and basics of formal verification and discusses the 

different methods used in section 2, and then a detailed explanation for the B method mathematics and 

modelling approaches are presented in section 3. The grammar for both B machines and VHDL codes are 

illustrated in section 4 then the proposed technique for conversion from B to VHDL is shown. Section 5 

presents the application of the proposed technique on various models which are used as workbenches and shows 

the simulation results. Conclusion and future directions are presented in section 6. 

 

II. FORMAL VERIFICATION 
Formal verification means to thoroughly investigate the correctness of system designs expressed as 

mathematical models. Formal verification is a useful and powerful technique for guaranteeing the reliability of 

systems in design stages [2]. In recent years, several approaches to applying formal verification techniques on 

automation systems dependability have been proposed. These range from formal verification by theorem 

proving [3] to formal verification by model-checking [4], [5], [6], [7]. Many achievements in the formal 

verification of real-time systems are presented in [8], [9], [10] and [11]  

The verification problems of timed systems are usually exponentially more complex than their untimed 

counterparts. Most major projects are spending over 50% of their development costs in verification and 

integration, so using formal verification can substantially reduce the explosive growth of verification and 

integration costs and improve the quality of system designs in industry. On the one hand, using formal 

verification for complex real-time systems will likely enhance the intelligence and performance of simulation 

and testing. For example, coverage metrics can be more precisely mapped to the functions to be verified. Also, 

formal verification can be used to carefully check the components and the interfaces and progressively could be 

accepted as standard methods in the automation of industrial quality control. It is claimed that this approach has 

already had a remarkable effect on the SLAM project of Microsoft, which plans to include model-checking 

capability in its Windows driver development kit (DDK) [12].  

Formal specification is defined by the IEEE standard as a specification written in a formal method. 

Formal methods are particular type of mathematically-based procedures for the specification, development and 

verification of systems. Performing appropriate mathematical analysis that contributes to the reliability and 

robustness of a design is the motivation for using formal methods for design. Systems can be formally described 

at different levels of abstraction. 

The formal description can be used to guide further development activities; moreover, it can be used to 

verify that the requirements for the system being developed have been entirely and precisely specified. A variety 

of formal methods and notations available are available, like Z notation, VDM and B-Method. 

Verification plays a vital role in the design cycle of any safety critical system. The development of any 

system is not complete without careful testing and verification that the implementation satisfies the system 

requirements. In the past, verification was an informal process performed by the designer. But as the complexity 

of systems increased, it became necessary to consider the verification as a separate step in the overall 

development cycle. Verification techniques can be either based on simulation or based on formal methods. 

Simulation is based on a model that describes the possible behavior of the system design at hand. This model is 

executable in some sense, such that a simulator can determine the system‟s behavior on the basis of some 

scenarios. Formal Verification is defined as “establishing properties of hardware or software designs using logic, 

rather than (just) testing or informal arguments. This involves formal specification of the requirement, formal 

modeling of the implementation, and precise rules of inference to prove that the implementation satisfies the 

specification” [13]. Three categories can be used to classify the Formal Verification methods - equivalence 

checking, model checking and theorem proving. 

Formal Verification depends on mathematical models and formal representations for system designs 

where the model is examined to ensure its correctness according to required behavior. 

Unlike simulation-based verification method which is input oriented, formal method-based verification 

is output oriented as the designer provides the properties of the outputs from the system. Formal verification 

overcomes the drawback of simulation based methods, by representing the system and its properties 

mathematically and logically then investigating the models to ensure that the system is satisfying the required 

properties in all its states. Figure1 illustrates the flow of formal verification. 

Design verification is classified in [14] into two types: equivalence checking which verifies that two 

versions of the design functionally equivalent, and Model checking where we verify that the implementation 

satisfies the specifications, in other words checking the model against the properties. Another important formal 

verification technique is theorem proving [15], [16] which is based on a pure mathematical or logical approach 

where the verification problem is described as a theorem in a formal theory. A formal Theory is a language in 

which the formulas are written, a set of axioms are developed, and a set of inference rules are used for proving. 

Theorems can be proved with rules and axioms. A desired property is satisfied if a proof can be constructed 

from the system axioms and inference rules.  
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In [17] an international survey of the use of industrial methods in industry is presented. The survey provides a 

view of the situation by comparing some significant projects used formal verification techniques effectively. 

Also [18] provides a study of selected projects and companies that have used formal methods in the design of 

safety-critical systems and [19] gives a general inspection of this industry in the UK. 

 
Fig.1:  Formal verification process 

 

III. B METHOD 
The B method is a model-oriented formal method for engineering software systems developed by 

Abrial [16]. It is a comprehensive formal method that covers the entire development cycle. The method is based 

on the mathematical principles of set theory and predicate calculus while its semantics is given using a variant 

of Dijkstra's weakest precondition calculus [17]. A hierarchy of components that are described using the 

Abstract Machine Notation (AMN) constitutes a B specification. Each component in a specification represents a 

state machine where a set of variables defines its state and a set of operations query and modify that state. 

Generalized substitutions describe state transitions. Constraints on the operation and variable types are described 

as invariants of a machine. In B models Abstract Machines are the top-level components describing state 

machines in an abstract way. Refinements are another type of components that exist in a B specification; they 

represent enriched versions of either an Abstract Machine or another Refinement. The last type of components is 

Implementations where ultimate refinement of an Abstract Machine is described; both data and operations need 

to be implementable in a high-level programming language.  

Syntax and type checking can be performed on a system modelled in B. Also a B model consistency 

can be verified to check the preservation of invariants and the correctness of all refinement steps. 

 

Table I: Commonly used B operators 

Notation Semantics 

P(X) Set of all subsets of X 

X  Y Cartesian product of the sets X and Y 

X ↔ Y Set of relation of X to Y, or equivalently P(X x Y) 

X ─>> Y Set of partial functions from X to Y 

X → Y Set of total functions from X to Y 

X │─>> Y Set of partial injective functions from X to Y 

Id(X) Identity relation on X 

R – 1  Inverse relation on X 

Dom(R) Domain of the relation R 

Ran(R) Range of the relation R 

R[X] Relational image of X under the relation R 

X   R Binary relation R restricted to pairs with first component in X 

X  R Binary relation R restricted to pairs with first component not in X 

R   X Binary relation R restricted to pairs with second component in X 

R  S Relation R overridden by S, Equivalent to (dom(S)  R) U S 

R (X) Direct product. Defined as {x, (y,z) | x,y Є R ^ x, z Є S} 

 

IV. MAPPING B MODELS INTO VHDL CODES 
The version of this template is V2.  Most of the formatting instructions in this document have been 

compiled by Causal Productions from the IJERD LaTeX style files.  Causal Productions offers both A4 

templates and US Letter templates for LaTeX and Microsoft Word.  The LaTeX templates depend on the 
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official IJERDtran.cls and IJERDtran.bst files, whereas the Microsoft Word templates are self-contained.  

Causal Productions has used its best efforts to ensure that the templates have the same appearance. 

 

A.  Introduction 

In this work a tool was developed to automatically convert verified B model into VHDL 

implementations to provide a way that avoids loosing any of the verified properties during the implementation 

stage. This section is concerned with the mapping technique developed in this work.  

 

B.  Converting B into VHDL  

Now we will explain how to convert each clause in the B machine to the required VHDL code. 

VARIABLES clause in the B machine can be transformed into signal declarations, SETS clause can be 

transformed into enumerated type in VHDL, OPERATIONS clause can be described using VHDL if or case 

statements. In this section the details of the mapping process will be discussed. 

An initialization step must be performed in the beginning which can be called a flattening process. In 

this flattening process the root machine that is including B machines as system components is analyzed and 

whenever an operation from an included machine is called the calling condition is inserted in the included 

machine operation.  

Then the signals assessed in the conditions are examined to find effective and remove ineffective 

signals. Signals taking two different values to call same operation are considered ineffective, because the 

operation will be called whatever the value of the signal is. 

Also the changing of signal values accompanying calling any of the operations is inserted in the operation 

definition inside the included machine. Then those inserted signals are examined to delete those that appear with 

two different assignments. 

This flattening step is very important to cross the gap between the way an included machine is 

expressed and handled in B models and the design of hardware components in and the connection of 

components VHDL  

The B machine starts with the word “MACHINE” followed by the machine name; the machine name is 

used as the entity name in the corresponding VHDL code. 

 

MACHINE mname(Name)  entityname = Name 

 

The VARIABLES clause in B machine defines the names of the variables which are mapped into port 

names in the VHDL code. The way variables are used in the operations determines the port directions. A 

variable that is used as condition must be an input port, a variable that is assigned values during operations is an 

output port, and variables used in both conditions and sometimes assigned values in other operations are defined 

as input/output ports. 

 

VARIABLES vname(Vname_1, …, Vname_n)  

     ports(Vname_1, Vdirection_1, Vtype_1,…, Vname_n, Vdirection_n, Vtype_n). 

 

Vname == operation_condition  Vdirection = in; 

Vname == operation_variable  Vdirection = out; 

Vname == operation_x_condition & operation_y_variable  Vdirection = inout. 

 

The SET clause is mapped into an enumerated type in VHDL with the same set name as the type name 

and the set values as the values the type can take; also a signal is defined with the enumerated type to represent 

the states of the machine. 

 

Setdef(Setname, setvalue_1,….,setvalue_n)   

                           enumerated_type_name =Setname, 

                           enumerated_type_value(setvalue_1,….,setvalue_n),  

                           signal_name_1 = state,  

                           signal_name_2 = next_state,  

                           signal_type = Setname 

 

Also a process is created in the VHDL code to map the state transitions corresponding to the set values, 

this process only operates the moving from state to next state or the ending state. The condition of moving to the 

ending state is left to the user to define it manually in the VHDL code. 
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Setdef(Setname, setvalue_1,….,setvalue_n)    

       state_trans_process(clk = clk +1, “user defined condition end state “->  

                                                                                        next_state =  end state; state = next_state) 

 

This process is considered a default process that increments the clock and moves the machine to the 

next state. As explained in the previous chapter the INVARIANT clause is used to define the types of the 

variables and also defines the properties that must be satisfied by the model. The verification process ensures 

that the properties defined by the INVARIANT clause are maintained by the machine operations in all system 

states, so during the implementation there is no need to map those properties somewhere in the VHDL code as 

they are mapped implicitly during inside the operations. So the INVARIANT clause is used only for mapping 

the types of the variables into the types of the ports in the VHDL code. 

A bool type variable is mapped into std_logic type. If a variable type is an integer or the set name then 

it is mapped into std_logic_vector with undefined size, the designer has to define it manually.  

 

Vtype == bool  VtypeI = std_logic; 

Vtype == INTEGER  VtypeI = std_logic_vector(x to y); 

Vtype == Setname  VtypeI = std_logic_vector(x to y). 

 

The INITIALIZATION statement in a B machine is handled by a synchronous reset process in the 

VHDL code. 

INITIALIZATION (Vname, :=, Vinit)          reset_process(reset = „1‟)->  Vname, <=, Vinit 

 

The main part of the code is in the OPERATIONS clause which can take different ways according to 

the described system. The clause starts with the keyword OPERATIONS, then each operation starts by an 

operation name followed by an equal sign then the statements of the operations. A process is created inside the 

architecture body of the VHDL code to include the mapping of the operations statements, the process will be 

labeled by the operations. 

Operations in the B machines are used to change the state of the system. They assign values to the 

machine variables depending on certain conditions. The operations begin with an operation name followed by 

an equal sign then the statements. Some operations call some functions or operations defined in the included 

machines, these calls are enclosed by the keywords “BEGIN” and “END”. In most cases the operations are 

made of conditional statements. Conditional statements in B are described using one of the keywords “IF”, 

“SELECT”, “PRE”. The three statements have approximately the same structure, so we will call either of them 

conditional statement. All the conditional statements are mapped into “if” statements in VHDL, the designer can 

convert “if” statements into case statements manually when needed. 

conditional_statement(condition1, statement)  

                    if_statement (Vcondition1, Vstatement); 

 

conditional_statement(condition1, statement, else_statement)  

                    if_statement (Vcondition1, Vstatement, Velse_statement); 

 

conditional_statement(condition1, condition2, statement)  

                    if_statement (Vcondition1, Vcondition2,Vstatement); 

 

conditional_statement(condition1, condition2, statement, else_statement)  

                    if_statement (Vcondition1, Vcondition2,Vstatement, Velse_statement); 

 

conditional_statement(condition1, condition2, condition3, statement)  

                    if_statement (Vcondition1, Vcondition2, Vcondition3, Vstatement); 

 

conditional_statement(condition1, condition2, condition3, statement, else_statement)  

  if_statement (Vcondition1, Vcondition2, Vcondition3,Vstatement, Velse_statement). 

 

The above figure describes how the mapping technique handles different forms of conditional 

statements in B machines and their corresponding VHDL mapping.  Nesting and multiple conditions (up to 3 

conditions for simplicity) are allowed in the shown conditional statements. The condition part can be either 

conjunction or disjunction of conditions. 
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The condition part in any conditional statement consists of a condition_variable that is one of the 

machine defined variables, followed by a relational operator then a condition value. The condition is mapped to 

the corresponding code part in VHDL. 

 

Condition(Cond_variable, rel_op, cond_value) 

                                                    V_Cond_variable, mapped_rel_op, V_condvalue. 

 

Cond_variable  Vname_n. 

 

Condition value can be either a Boolean value(true or false), a digit, or one of the machine defined set values. 

cond_value(true)  V_condvalue(„1‟);  

cond_value(false) V_condvalue(„0‟); 

cond_value(digit)  V_condvalue(digit); 

cond_value(setvalue_n)  V_condvalue(setvalue_n); 

 

The statement part of the conditional statement may be a simple statement assigning values to one of 

the defined machine variables, or a nested statement introducing new conditional statements. The statement may 

be a conjunction of two or more statements. 

 

Statement (simple_statement)  Vsimple_statement; 

Statement (simple_statement1, simple_statement2)  Vsimple_statement1, Vsimplestatement2; 

Statement (nested_conditional_statement)  Vnested_conditional_statement. 

 

A simple statement consists of a statement variable that is one of the machine defined variables, 

followed by the assignment operator, then the assigned value.  

 

Simple_statement(stat_variable, assign_op, stat_value)  

                                                         Vstat_variable, Vassign_op, Vstat_value) 

 

stat_variable (Vname_n) Vstat_variable(Vname_n). 

 

The assigned value is one of three options: the first option is to be one of the set values defined in the B 

machine, the second option is to be a numerical value, and the third one is to be a mathematical operation on one 

of the machine defined variables. 

 

stat_value (setvalue_n)  Vstat_value( setvalue_n); 

stat_value (N)  Vstat_value(N); 

stat_value ( Vname_n, m_op, N)  Vstat_value( Vname_n, m_op, N). 

 

The nested conditional statement is similar to the original one, but it allows an “elseif” part. 

Also multiple conditions (conjunction or disjunction of conditions) are allowed in the nested conditional 

statement. 

 

n_conditional_statement(condition, statement)  

                    if_statement (Vcondition, Vstatement). 

n_conditional_statement(condition, statement, elseif_condition, else_statement)  

                     if_statement (Vcondition, Vstatement, Velseif_condition, Velseif_statement). 

n_conditional_statement(condition, statement, elseif_condition1, elseif_condition2, else_statement) 

                     if_statement (Vcondition, Vstatement, Velseif_condition1, Velseif_condition2,          

Velse_statement). 

n_conditional_statement(condition1, condition2, statement)  

                    if_statement (Vcondition1, Vcondition2,Vstatement). 

n_conditional_statement(condition1, condition2, statement, elseif_condition, else_statement)  

                    if_statement (Vcondition1, Vcondition2, Vstatement, Velseif_condition,   Velseif_statement). 

n_conditional_statement(condition1, condition2, statement, elseif_condition1, elseif_condition2, 

else_statement) 
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                         if_statement (Vcondition1, Vcondition2, Vstatement, Velseif_condition1,  

Velseif_condition2, Velse_statement). 

 

Operators are mapped from B machines to the corresponding VHDL operators. There are four groups 

of operators; the first is the group of relational operators used in conditions (equal, not equal, greater than, less 

than, greater than or equal, less than or equal). Some of the relational operators of B and VHDL use Whenever 

the “INCLUDES”, and “SEES” statements appear in a B machines, this means that the corresponding VHDL 

implementation should includes some components. Each included or seen machine is mapped into a component, 

and the including machine will contain the code connecting all included or seen components. 

 

INCLUDES inc_mnames(inc_name_1, … , inc_name_n) 

                                       component_1 = inc_name_1, …, component_n =inc_name_n. 

 

SEES seen_mnames(seen _name_1, … , seen _name_n) 

                                 component_1 = seen _name_1, …, component_n = seen _name_n. 

 

C. Tool structure 

In this work a tool was developed to automate the mapping of verified B models into VHDL 

implementations.  The tool scans a text file containing the B machine and gives out the corresponding VHDL 

that in some cases will need some adjustments from the designer. The tool starts by converting the input file into 

a list of words. This list of words is then checked against the predefined grammar rules of B machines. The 

grammar rules of B are defined using DCG rules in SWI prolog. The input B file should follow the described 

rules exactly, any mistake will cause the tool to fail and stop. The next step is to extract and adjust the variables 

that will be used in writing the VHDL code. The last part of the tool is the writer function that follows the 

defined VHDL syntax and writes out the VHDL file using extracted and adjusted variables. In this section we 

are going to describe the tool structure in details. Figure 2 shows the structure of the developed tool. 

 
Fig.2: Structure of the developed tool 

 

1) B machine tokenization: 

This part of the tool simply scans the input file and gives out a list of words separated by commas. The 

part is built up using a prolog function that scans the file till its end ignoring new line separators. The space 

marks the beginning of a new token. Part of the prolog function is shown below. 

 

parse:-   see('bin.txt'), read_line(Lines),  write_words(Lines), seen,  !.       

read_word(C, [], C):- space(C), !. 

read_word(C, [], C) :- newline(C), !. 

read_word(Char, [Char|Chars], Last):- get0(Next),  read_word(Next, Chars, Last). 

 

2) B grammar Checker: 

Any language can be considered as a set of sentences or strings of finite length [20]. To define a new, 

or describe an existing one – either a natural or a programming language – the specification ought to include 
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only well-formed strings. Much formalism has been proposed to facilitate systematic descriptions of languages, 

remarkably the formalism of context free grammars (CFGs). A CFG is built from production rules describing 

the semantics of the described language. Many Prolog systems utilize a particular syntax for language 

specifications called Definite Clause Grammars (DCGs) [20]. When such a description is encountered, the 

system automatically compiles it into a Prolog program. DCGs are generalizations of CFGs. 

In our tool we the B grammar was described using DCG rules in SWI prolog. The left hand side of the 

rule denotes the name of the statement that is being defined in the right hand side. Figure shows the DCG rule 

for the condition part of the conditional statement. The right hand side of the rule states that the condition 

consists of a condition variable followed by a relational operator then a value. The next part of the figure shows 

the definition of the condition value using three rules with the same left hand side. This indicates that the 

condition value may be one of three options, a boolean value (true or false), a digit or a set value. 

 

cond(CondVname,Condvalue,R) -->condition(CondVname),eq(R), condvalue(Condvalue). 

condvalue(Bvalue)--> bvalue(Bvalue). 

condvalue(Digit)-->digit(Digit). 

condvalue(CSetvalue)-->csetvalue(CSetvalue). 

 

Another DCG rule is used to describe the statement part of the conditional statement. It starts by one of 

the variable names then the assignment operator in B “:= “ followed by the statement value. The rule describes 

the conjunction of two statements. 

 

simplestat(Svname,Var,Digit1,Digit2,Svnamestat2,Varstat2,Digit1stat2,Digit2stat2)--> 

svname(Svname),col,eqs,statvalue(Var,Digit1,Digit2),(and,simplestat2(Svnamestat2,Varstat2,Digit1stat2,Digit2

stat2);!). 

 

The statement value is then described to be one of three options: a set value, numerical value, or a 

number added to one of the machine variables.  

 

statvalue(Var,Digit1,Digit2) -->csetvalue(Var);(digit(Digit1);(svname(Var),plus,digit(Digit2) )). 

 

3) Extracting and adjusting Variables: 

This part of the tool is concerned with the variables that are required in writing the VHDL code. DCG 

rules in prolog allows variable passing. The variables needed in writing the VHDL code are passed to the 

writing function through DCG rules.  

 

The machine name is passed to the writing function through the variable “Name”. 

mname(Name) -->[Name], {mname(Name) }. 

 

Similarly for the variable types. 

 

vtype1(Vtype1) -->[Vtype1], {vtype1(Vtype1) }. 

 

But the variable types need some adjustments before being used by the writing function. A boolean 

type is converted to std_logic, integer and set variables are converted into std_logic_vectors. The size of the 

vector is left to the designer to determine it manually. 

 

(Vtype1 == bool -> Vvtype1 = std_logic ;(Vtype1 == INTEGER -> Vvtype1 = std_logic_vector(x to y); Vtype1 

== Setname -> Vvtype1 = std_logic_vector(x to y))) 

 

Another example for variables that needs adjustments is the boolean condition values, true is converted 

into „1‟ and false into „0‟. 

 

Condvalue1=="TRUE" -> Condvalue1 = '1'; Condvalue1=="FALSE" ->  Condvalue1 ='0' 

 

4) VHDL writer: 
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The VHDL writer is the last stage, it uses the variables passed to it and follows the VHDL defined 

rules to write the final code. The write predicate which is a predefined predicate in prolog is used. A text file is 

created and the lines of code start to be written.  

 

tell('ToFile2.txt'), 

 open(File, append, Stream,[type(text)]), 

 

First the machine name is inserted as an entity name  

 

write(Stream, ('entity ')), 

write(Stream, Name),     write(Stream,' is'), nl(Stream), 

 

Then the variable names are written as ports with their type and direction according to the VHDL syntax. 

 

write(Stream, ('port(')), 

 write(Stream, Vname1), 

 write(Stream, (': ')),write(Stream, Vdirection1), write(Stream, (' ')),write(Stream, 

Vvtype1),write(Stream, ('; ')), 

 

Next the architecture part is written. 

 

write(Stream,('architecture behavioral of ')),write(Stream, Name),write(Stream,(' is )),nl(Stream), 

 

Type and signal definitions corresponding to “SETS” clause in the B machine are written before the 

key word “begin” of the architecture. 

 

write(Stream,('type ')),write(Stream,Setname),write(Stream,(' is (')),write(Stream,Setvalue1),write(Stream,(' , 

')),write(Stream,Setvalue2), write(Stream,(' , ')),write(Stream,Setvalue3), write(Stream,(') ; ')),nl(Stream) 

 ,write(Stream,(' Signal state, next_state : ' )),write(Stream,Setname),write(Stream,(';')),nl(Stream), 

 

It should be noted that variables are used by the writing functions to indicate the existence of their 

statements. That is if a variable is empty it means that its statement is not found. This is used to check for 

multiple conditions, nested conditional statements and similar variations in the B code. 

A part of the operations process is shown.  

 

write(Stream,('operations:process(insert the sensitvity list  here)')),nl(Stream), write(Stream,(' begin ' )), 

 

 nl(Stream),write(Stream,('if')),write(Stream,(' 

(')),write(Stream,IVnameop1),write(Stream,R1),write(Stream,Condvalue1),write(Stream,(' )')),(IVnameop12=[]-

>!;write(Stream,('and')),write(Stream,IVnameop12),write(Stream,R12),write(Stream,Condvalue12),write(Strea

m,(' )'))),(IVnameop13=[]-

>!;write(Stream,('and')),write(Stream,IVnameop13),write(Stream,(R13)),write(Stream,Condvalue13),write(Stre

am,(' )'))),write(Stream,(' then')), 

 

The writing continues in the same way till the end and produces a text file. The designer has to do some 

adjustments manually like the size of vectors and the processes sensitivity lists. Then this code can be used by 

synthesis and simulation tools.  

 

V. EXPERIMNETAL RESULTS 
Five models were selected as workbenches to be used to apply the conversion from B to VHDL 

developed in this thesis: 

Simplified flight control system Model 

Train Gate problem 

Soldier Torch problem 

Production Cell 

Platform screen door controller 

 

A.  Case Study 1: Simplified fight control system 
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The considered flight control system consists of three redundant functions. The system produces 

periodic signals to the flaps. The system is an asynchronous distributed system, where each function is running 

on a separate computing device running with its own clock. There is no synchronization between the three 

clocks. The communication is handled through command messages sent and received over communication 

channels between the devices. This model was discussed in detail in [21] which was the initial step in this 

research 

 

B. Case Study 2: The train Gate problem 

The train-gate case study is a railway control system which controls access to a bridge for several trains. 

The bridge is a critical shared resource that may be accessed only by one train at a time. The system is defined 

as a number of trains (2 in the given simple case) and a controller. A train can not be stopped instantly and 

restarting also takes time. Therefore, there are timing constraints on the trains before entering the bridge. When 

approaching, a train sends a appr! signal. Thereafter, it has 10 time units to receive a stop signal. This allows it 

to stop safely before the bridge. After these 10 time units, it takes further 10 time units to reach the bridge if the 

train is not stopped. If a train is stopped, it resumes its course when the controller sends a go! signal to it after a 

previous train has left the bridge and sent a leave! signal. The details of this case study are given in the 

UPPAAL tutorial [22]. 

The problem is modeled in three main components train, gate controller, and queue. B machines are 

used to model each component and verify its operation. Then a root machine is used to model and verify the 

overall operation using 2 train instants for simplicity. 

The verified properties for this system are: 

The gate can receive and store messages from approaching trains in the queue. 

Train 1 can cross the bridge. 

Train 1 can be crossing the bridge while Train 2 is waiting to cross. We check for similar properties for the other 

trains. 

Whenever a train approaches the bridge, it will eventually cross. 

The two trains can‟t cross the gate at the same time 

The system is deadlock-free. 

Using Atelier B, 36 proof obligations were generated and verified. The FSM and B machines modeling 

the train, gate controller, queue and the root machine are shown in the following figures. 

The proposed technique was used to generate the VHDL implementation for the system components, 

Simulations were used to check the operation of the model and showed that the verified properties were 

maintained. 

An example of the performed simulations is shown in figure 3 that shows the simulation at the instant 

when train1 sends a signal to the gate controller indicating it is approaching the gate, as a result of receiving this 

signal the approaching train id is set to 1 and a counter is started to count the required delay. 

Also figure 4 shows that an approaching train is added to the queue and stopped while another one was crossing. 

 

 
Fig.3: Train 1 approaching 
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Fig.4: An approaching train is added to the queue and stopped while another one was crossing 

 

C.  Case Study 3: The Bridge 

In this case study the bridge example is used, which is the famous situation in which we have 2 soldiers 

and single torch, while each soldier has a different speed. This test case is one of the UPPAAL demo designs. 

B machines are used to describe the operation of the soldier and the torch.  The root B-machine includes 3 

machine instances; one for Torch machine and two for Soldier machine named Viking1 and Viking2. Each 

Viking has a different time delay; the property that was verified is that the safe state will be entered after the 

specified delay for the soldier. Atelier B tool was used, 20 proof obligations was generated and verified. 

Our proposed technique was applied to generate the corresponding VHDL implementation for the model. 

Simulation results are used to ensure that the generated VHDL code maintains the verified properties. 

The following simulation in figure 5 shows Viking 2 taking the torch and a counter counting the 

required dealy then Viking 2 enters the safe state. 

 
Fig.5: Viking 2 is in safe state after 5 clocks 
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D.  Case Study 4: Production Cell 

The production cell case study is an attempt to define a realistic industrial application. It was developed 

by FZI in Karlsruke as part of the Korso Project [23]. The work in [24] simplified the model and added timing 

to all operations and requirements. The overall purpose of the cell is to take metal plates from a feed belt, press 

them and then move them to a deposit belt. Plates are moved by a robot. Arm A of the robot takes a plate from 

the table which itself must twist and rise when it gets a single plate and places the plate on the press. When the 

plate has been pressed, Arm B of the robot carries the plate to the deposit belt. The arms of the robot are fixed 

with respect to each other so the robot controller must coordinate its operations on the 2 arms. A sensor is used 

to communicate to the robot that a plate has arrived at the cell. 

 
Fig.6: Figure Production Cell 

 

The main property to be verified is the worst case plate traversal time, an assumption is made that 

whenever the cell is able to accept a further plate, one is available. The six concurrent elements of the 

production cell and the plate passing through the system are represented by FSMs. 

A B machine is used to model each of the six components of the productions cell. Atelier B was used to 

verify the operation of each component and the time constraints. B model is used to represent the overall 

operation of the production cell and verify the synchronization of the movement of the plate starting from the 

feed belt till it reaches the press then is moved to the deposit belt. The temporal values of production cell 

activities are shown in table 1. 105 proof obligations were generated and proved. 

Our proposed technique is then used to generate the VHDL implementation for each of the cell 

elements. Simulations were used to ensure the correct operation at certain time instants. The following figures 

show the simulation results for the robot. 

 

Table II: Description of timing for production cell elements 

Device Description Time units 

FEED BELT 

FEED BELT 

TABLE 

TABLE 

PRESS 

PRESS 

DEPOSITBELT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

ROBOT 

Move to sensor 

Move to table 

Raise and twist 

Return and twist 

Press plate 

Return ready for new plate 

Move plate out of cell 

To press 

Turn 90 

To deposit belt 

From conv to table 

From conv to wait position 

From press to wait position 

From wait position to table 

From wait position to press 

At wait position 

3 

1 

2 

2 

22-25 

18-20 

4 

5 

15 

5 

25 

22 

17 

3 

2 

2 
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Fig.7: Robot model 

 

The simulation in figure 7 shows the robot model when plate taken signal is received from the table it 

moves the arm to the press in 5 clock cycles then resets the counter. 

After reaching the press the robot turns 90 degrees, this takes 15 time units as shown in figure 8. 

 

 
Fig.8: The robot turns 90 degrees in 15 time units 

 

E. Case Study 5: Platform screen door controller 

This application was presented in [25] as one of the application of the B formal method to the 

development of safety critical systems. In France, Platform screen doors (PSD) were used for years to prevent 

passengers to enter or to fall on tracks. Such a system was adopted by the METEOR driverless metro, as it 

dramatically improves trains availability. In order to offer higher quality services and more safety to its 

passengers, the public transportation operator was trying to introduce this kind of protection system in several 

lines, automated or not. 

ClearSy was in charge of developing the control command controller that can detect the arrival, 

presence at a standstill and departure of trains without direct connection with them. Once the train is at standstill, 

the controller should be able to detect train doors opening and closing, and then issue PSD opening and closing 

orders. These orders have to be securely issued (failure by elaborating a wrong opening order may lead to 

passengers‟ injury or death).  
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In order to reach the required safety level during project timescale, it was decided to set up a 

development method reaching targeted reliability, and also ensuring traceability between the different stages of 

the projects in order to reduce the validation effort. This method was heavily based on the B formal method, and 

applied during most phases of the project. 

The B method was used to: 

- Verify on the overall system (PSD + controller) that functional constraints and safety properties were verified 

(no possibility to establish forbidden connections between train and platform or between train and tracks). 

- Lead to the observation of dangerous system behaviour. 

A new architecture was proposed, making use of usual sensors and processing based on temporal sequence 

recognition of sensor events. Hyper frequency, infrared and laser sensors help to improve system resistance to 

various perturbations. Redundancy among sensors using different technology raises measures confidence. These 

sensors were positioned on the platform and pointed to the tracks in order to measure train position, train speed 

and train door movements. 

System and software specification were then formalized in B by the development team, taking into 

account only nominal behaviour for the sensors (in absence of perturbation). Models obtained from previous 

functional analysis (independent from any PSD controller architecture) were directly reused. The proposed 

architecture was modeled and inserted in these previous models. New architecture was successfully checked by 

proof to comply with functional specification of the system, including parts of the French underground 

regulations. Controller functions were then precisely modeled (train arrival, train detection, train departure, train 

door opening, train door closing, etc).  

More details about the project are available in [25]. 

Our proposed technique was applied to the B machine of the PSD controller to develop the VHDL 

implementation. 

Simulation was performed to show that the generated VHDL code maintains the verified properties. 

The following figures explain the behavior of the developed PSD controller. 

 

 
Fig.9: Going to the ready state 

 

When a metro is arriving a signal is received by the controller so it moves to the ready state as in figure 

9, and then starts gathering images. rimage signal is activated to start capturing images and the counter is rset to 

count the 50 time units figure 10. 

 

 
Fig.10: Metro stop 
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After the 50 units passed and the stop signal is received indicating that the metro arrived and is 

standstill the images are used to ensure the position of the doors, the controller state is moved to the stop state 

the counter is reset to count 5 units then issues the door opening signal 

 

VI. CONCLUSION 
The most common procedure to ensure the reliability of a design is simulation. Unfortunately 

simulation cannot fully inspect all the execution states of the system. The significant increase in the complexity 

and size of digital systems together with the nature of real time systems boosted up the need for a different 

approach for the validation of the behavior of a system in the early design stages. Formal verification is an 

approach to validate a system by formally reasoning the system behavior. In formal verification the system 

implementation is checked against the requirements or the properties to be satisfied.  

B method is one of the common paradigms used in formal verification. B method offers a strong verification 

domain as it is based on a mathematical and logical approach. The proof obligations (properties that must be 

satisfied) are automatically generated from the model; also the available tools provide both automatic and 

interactive proofs. B-Method gives a formal description of systems; Verification is performed through theorem 

proving avoiding state explosion problem in Model checking. Proof obligations are deduced automatically from 

the model. 

VHDL is a mature implementation domain where many synthesis and simulation tools are available. 

It is required to reach an approach for developing “correct-by-construction” designs to enhance the long and 

expensive design cycle used in the “construct-by-correction” design approach. 

The developed technique employed the strong verification framework offered by the B method together with the 

premature VHDL implementations to achieve “correct-by-construction” designs. We reached a direct 

conversion of the verified B models into implementation which avoids losing any of the verified properties.  

Although the semantics of B is completely different than that of VHDL, and not all constructs of B are available 

in VHDL, the work in this thesis provided a technique to cross the challenging gap between the B and VHDL. 

Developing VHDL implementations directly from a verified B machines maintaining the verified specifications 

of the B model.  

The proposed technique was applied on five popular models used as benchmarks: Simplified flight 

control system Model, Train Gate problem, Soldier Torch problem, Production Cell, Platform screen door 

controller. B machines for the models were verified using Atelier B tool. The Atelier B automatically generates 

and proves the proof obligations to ensure that the system requirements are satisfied. The proposed technique 

was used to generate the VHDL codes for the designs. The generated VHDL codes were synthesized on the 

Xilinx ISE tool and simulations were performed using ModelSim simulator. Simulation outputs showed that all 

the verified properties of the B models were maintained in the implementation. This proves that the proposed 

technique added the B and VHDL domains in a complete design cycle for a “correct-by-construction” approach. 

There are two future directions for this work: The developed tool can include a larger subset of the B constructs, 

and allow more automation for the nesting of conditions in the input B machine, detecting the final state of the 

system, and determining the size of vectors for input and output ports and signals in the generated VHDL code. 

The generated VHDL code was checked against the verified properties by simulation at some critical points. 

The developed tool can be integrated with a model checking tool to provide more confidence that the 

implemented system maintains all the verified model properties. 
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